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Chapters 1 and 2 showed you how to declare 
and access simple variables in an assem-

bly language program. This chapter fully 
explains ARM memory access. You’ll learn how 

to efficiently organize your variable declarations to 
speed up access to their data. You’ll also learn about the 
ARM stack and how to manipulate data on it.

This chapter discusses several important concepts, including the 
following:

•	 Memory organization

•	 Memory access and the memory management unit

•	 Position-independent executables and address space layout 
randomization

•	 Variable storage and data alignment

•	 Endianness (memory byte order)

3
M E M O R Y  A C C E S S  

A N D  O R G A N I Z A T I O N

335-129461_ch01_1P.indd   119335-129461_ch01_1P.indd   119 02/05/24   9:32 PM02/05/24   9:32 PM



-1—
0—

+1—
120   Chapter 3

•	 ARM memory addressing modes and address expressions

•	 Stack operations, return addresses, and preserving register data

This chapter will teach to you make efficient use of your computer’s 
memory resources.

	 3.1	 Runtime Memory Organization
A running program uses memory in many ways, depending on the data’s 
type. Here are some common data classifications you’ll find in an assembly 
language program: 

Code ​   Memory values that encode machine instructions (also known 
as the text section under Linux and macOS). 

Uninitialized static data ​   An area in memory set aside by the program 
for uninitialized variables that exist the whole time the program runs; 
the OS will initialize this storage area to 0s when it loads the program 
into memory. 

Initialized static data ​   A section of memory that also exists the whole 
time the program runs. However, the OS loads values for all the vari-
ables appearing in this section from the program’s executable file, so 
they have an initial value when the program first begins execution. 

Read-only data ​   Similar to initialized static data, insofar as the OS 
loads initial data for this section of memory from the executable file. 
However, this section is marked read-only to prevent inadvertent modi-
fication of the data. Programs typically store constants and other 
unchanging data in this section (the code section is also marked read-
only by the OS). 

Heap ​   This special section of memory is designated to hold dynami-
cally allocated storage. Functions such as C’s malloc() and free() are 
responsible for allocating and deallocating storage in the heap area. 
“Pointer Variables and Dynamic Memory Allocation” on page XX dis-
cusses dynamic storage allocation in greater detail. 

Stack ​   In this special section in memory, the program maintains local 
variables for procedures and functions, program state information, and 
other transient data. See “The Push and Pop Operations” on page XX 
for more information about the stack section. 

These are the typical sections you will find in common programs, 
assembly language or otherwise. Smaller programs won’t use all these sec-
tions, though most programs have at least code, stack, and data sections. 
Complex programs may create additional sections in memory for their 
own purposes. Some programs may combine several of these sections. For 
example, many programs will combine the code and read-only sections into 
the same section in memory (as the data in both sections gets marked as 
read-only). Some programs combine the uninitialized and initialized data 
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sections, initializing the uninitialized variables to 0. Combining sections is 
generally handled by the linker program. See “For More Information” on 
page XX concerning the GNU linker. 

Linux and macOS tend to put different types of data into different sec-
tions (or segments) of memory. Although it is possible to reconfigure mem-
ory to your choice by running the linker and specifying various parameters, 
one typical organization might be similar to that in Figure 3-1. 

High addresses

Adrs=0x0  = 

Stack

Heap

Code (.text section/program instructions)

Read-only data (.rodata section)

Static (.data) variables

Uninitialized storage (.bss section) variables

Reserved by OS (typically 128kB)  

Figure 3-1: A Linux/macOS example runtime memory organization 

This figure is just an example. Real programs will likely organize mem-
ory differently, especially when using address space layout randomization 
(ASLR), discussed later in this chapter. 

The OS reserves the lowest memory addresses. Generally, your applica-
tion cannot access data (or execute instructions) at these low addresses. 
One reason the OS reserves this space is to help trap NULL pointer refer-
ences: if you attempt to access memory location 0x0 (NULL), the OS will 
generate a segmentation fault (also known as a general protection fault), mean-
ing you’ve accessed a memory location that doesn’t contain valid data. 

The remaining six areas in the memory map hold different types of 
data associated with your program. These sections of memory include the 
stack section, the heap section, the .text (code) section, the .data section, 
the .rodata (read-only data) section, and the .bss (storage) section. Each of 
these memory sections corresponds to a type of data you can create in your 
Gas programs. I will describe the .text, .data, .rodata, and .bss sections in 
detail next. (The OS provides the stack and heap sections; you don’t nor-
mally declare these two in an assembly language program, so there isn’t 
anything more to discuss about them here.) 

3.1.1  The .text Section
The .text section contains the machine instructions that appear in a 
Gas program. Gas translates each machine instruction you write into a 
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sequence of one or more word values. The CPU interprets these 32-bit word 
values as machine instructions during program execution. 

By default, when GCC/Gas/ld links your program, it tells the system 
that your program can execute instructions and read data from the code 
segment, but cannot write data to the code segment. The OS will generate a 
segmentation fault if you attempt to store any data into the code segment. 

3.1.2  The .data Section
You’ll typically put your variables in the .data section. In addition to declar-
ing static variables, you can embed lists of data into the .data declaration 
section. You use the same technique to embed data into your .data section 
that you use to embed data into the .text section: use the .byte, .hword, 
.word, .dword, and so on, directives. Consider the following example: 

     .data 
bb:  .byte    0 
     .byte    1,2,3 

u:   .word    1 
     .dword   5,2,10 

c:   .byte    0 
     .byte    'a', 'b', 'c', 'd', 'e', 'f' 

bn:  .byte    0 
     .byte    true  // Assumes true is defined as 1. 

Values that Gas places in the .data memory segment by using these 
directives are written to the segment after the preceding variables. For 
example, the byte values 1,2,3 are emitted to the .data section after bb’s  
0 byte. Because there aren’t any labels associated with these values, you do 
not have symbolic access to these values in your program. You can use the 
indexed addressing modes (described later in this chapter) to access these 
extra values. 

3.1.3  Read-Only Data Sections
Gas does not provide a stand-alone directive for creating sections that hold 
read-only constants. However, you can easily use the Gas .section directive 
to create a generic read-only constant section as follows: 

.section .rodata, ""

Most programs use the .rodata identifier, by convention, for read-only 
data. For example, GCC uses this name for read-only constant sections. You 
could use any identifier you choose here. For example, I often use the name ​
.const for constant sections. However, as GCC uses .rodata, I’ll stick to that 
convention in this book. I’ll say more about the .section directive a little 
later; for the time being, note that as long as the second argument is the 
empty string, Gas will create a read-only data section by using this directive. 
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The .section .rodata section holds constants, tables, and other data that 
your program cannot change during execution. This section is similar to 
the .data section, with two differences: 

•	 The .rodata section is defined with .section .rodata, "" rather than 
.data. 

•	 The system does not allow you to write data to variables in an .rodata 
object while the program is running. 

Here’s an example: 

         .section  .rodata, ""
pi:      .single   3.141592653589793 // (rounded) 
e:       .single   2.718281828459045 // (rounded) 
MaxU16:  .hword    65535 
MaxI16:  .hword    32767 

For many purposes, you can treat .rodata objects as literal constants. 
However, because they are actually memory objects, they behave like read-
only .data objects. You cannot use an .rodata object anywhere a literal 
constant is allowed. For example, you cannot use them as displacements 
(constant offsets from a base pointer) in addressing modes (see “The ARM 
Memory Addressing Modes” on page XX), in constant expressions, or as 
immediate values. In practice, you can use them anywhere that reading a 
.data variable is legal. 

 

L INU X V S. M ACOS: FORCED CODE A L IGNMEN T 

ARM machine instructions must be aligned on a word (32-bit) boundary. The 
ARM cannot physically address an instruction that is not so aligned. Therefore, 
if you insert data into the .text section that is not a multiple of 4 bytes long, 
any instructions following that data will be misaligned. You must always include 
an .align 2 (or .balign 4) directive before any code appearing after data that 
is not a multiple of 4 bytes long in the .text section. 

The macOS assembler is so paranoid about this that it requires all symbols 
appearing in the .text section to be aligned on a 4-byte boundary, and it will 
generate an error if it encounters a label declaration (label:, where label rep-
resents any identifier) that is not associated with a word-aligned address. The 
only way to correct this error is to insert an .align 2 (or .balign 4) directive 
before the label declaration. This can create a problem for certain data decla-
rations in the .text section. Consider the following code: 

      .align 2 
bb:   .byte 0 
c:    .byte 0 

(continued)
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The macOS assembler will require both of these symbols to be word-
aligned (requiring an .align 2 directive between them), even if you don’t want 
this. You might, for example, want c to immediately follow bb in memory. The 
macOS assembler does not allow this. If you define a label, that label must be 
aligned on a word boundary. 

One solution is to avoid putting data in the .text section; just put your 
read-only constants, such as .rodata, in their own section. However, there are 
good reasons for wanting to put data in the .text section. In those situations, 
you’ll have to work around this limitation when writing code for macOS. 

As with the .data section, you may embed data values in the .rodata sec-
tion by using the .byte, .hword, .word, .dword, and so on, data declarations. 
For example: 

         .section  .rodata, ""
roArray: .byte     0 
         .byte     1, 2, 3, 4, 5 
dwVal:   .dword    1 
         .dword    0 

You can also declare constant values in the .text section. Data values 
you declare in this section are also read-only objects, as Linux and macOS 
write-protect the .text section. If you do place constant declarations in a 
.text section, take care to place them in a location that the program will 
not attempt to execute as code (such as after a b.al or ret instruction). 
Unless you’re using data declarations to manually encode ARM machine 
instructions (which would be rare and done only by expert programmers), 
you don’t want your program to attempt to execute data as machine instruc-
tions; the result is usually undefined. 

N O T E 	 Technically, the result of executing data in the .text section is well-defined: the 
machine will decode whatever bit pattern you place in memory as a machine instruc-
tion. However, few people will be able to look at a piece of data and interpret its 
meaning as a machine instruction. 

3.1.4  The .bss Section
The .data section requires that you initialize objects, even if you simply 
place a default value of 0 in the operand field. The .bss (block started by 
symbol) section lets you declare variables that are always uninitialized when 
the program begins running. This section begins with the .bss reserved 
word and contains variable declarations whose initializers must always be 0. 
Here is an example: 
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             .bss 
UninitUns32: .word  0 
i:           .word  0 
character:   .byte  0 
bb:          .byte  0 

The OS will initialize all .bss objects to 0 when it loads your program 
into memory. However, it’s probably not a good idea to depend on this 
implicit initialization. If you need an object initialized with 0, declare it in a 
.data section and explicitly set it to 0. 

Annoyingly, Gas requires you to explicitly provide an initializer of 0 
when declaring variables in the .bss section. Good assembly language pro-
grammers don’t like doing this, because providing their source code with an 
explicit value tells the reader that they are expecting that variable to contain 
that value when the program runs. If the program explicitly isn’t expecting 
the variable to be initialized, it would be nice to tell the reader that. 

A very old convention to make this statement is to use the expression .-. 
in the operand field of such declarations. For example: 

             .bss 
UninitUns32: .word  .-. 
i:           .word  .-. 
character:   .byte  .-. 
bb:          .byte  .-. 

Gas substitutes the current value of the location counter (see “Gas 
Storage Allocation for Variables” on page XX) in place of the period (.). 
The expression location_counter minus location_counter is equal to 0, which 
satisfies the Gas requirements for initializers in the .bss section. This 
strange syntax lets the reader know that you’re not explicitly expecting the 
variable to be initialized with 0 when the program runs. 

If .-. is too bizarre for your tastes (or you don’t want to have to type three 
characters), I’ve often used something like this to get the same results: 

             .equ   _, 0  // "_" is a legitimate identifier 
             .bss 
UninitUns32: .word  _
i:           .word  _
character:   .byte  _
bb:          .byte  _

This book tends to use the .-. form (when not explicitly specifying 0), 
as there is historical precedence for it. This form has one drawback, how-
ever: it does not work for .qword declarations (this is a Gas limitation). 

Variables you declare in the .bss section may consume less disk space 
in the executable file for the program. This is because Gas writes out initial 
values for .rodata and .data objects to the executable file, but it may use a 
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compact representation for uninitialized variables you declare in the .bss 
section. Note, however, that this behavior is dependent on the OS version 
and object-module format. 

3.1.5  The .section Directive
The .section directive allows you to create sections using any name you 
please (the .rodata section is an example). The syntax for this directive is 

.section identifier, flags 

where identifier is any legal Gas identifier (it does not have to begin with 
a period) and flags is a string surrounded by quotes. The contents of the 
string vary by OS, but both Linux and macOS seem to support the follow-
ing characters: 

b    Section is a .bss section and will hold uninitialized data. All data 
declarations must have a 0 initializer. 

x    Section contains executable code. 

w    Section contains writable data. 

a    Section is allocatable (must be present for data sections). 

d    Section is a data section. 

The flags string may contain zero or more of these characters, though 
certain flags (such as "b" and "x" or "d") are mutually exclusive. If the "w" 
flag is not present in the string, the section will be read-only. Here are some 
typical .section declarations: 

.section aDataSection, "adw" // Typical data section 

.section .const, ""          // Like .rodata 

.section .code, "x"          // Code section (like .text) 

Each unique section you define will be given its own block of memory 
(such as the blocks that appear in Figure 3-1). The GNU linker/loader  
will merge all sections with the same name when assigning them to blocks 
of memory. 

3.1.6  Declaration Sections
The .data, .rodata, .bss, .text, and other named sections may appear zero or 
more times in your program. The declaration sections may appear in any 
order, as the following example demonstrates:

            .data
i_static:   .word     0

            .bss
i_uninit:   .word     .-.
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            .section  .rodata, ""
i_readonly: .word     5

            .data
j:          .word     0

            .section  .rodata, ""
i2:         .word     9

            .bss
c:          .byte     .-.

            .bss
d:          .word     .-.

            .text

Code goes here.

The sections may appear in an arbitrary order, and a given declaration 
section may appear more than once in your program. As noted previously, 
when multiple declaration sections of the same type (for example, the three 
.bss sections in the preceding example) appear in a declaration section of 
your program, Gas combines them into a single group, in any order it pleases.

3.1.7  Memory Access and MMU Pages
The ARM’s memory management unit (MMU) divides memory into blocks 
known as pages. The OS is responsible for managing pages in memory, so 
application programs don’t typically worry about page organization. However, 
when working with pages in memory, make sure you’re aware of whether the 
CPU even allows access to a given memory location and whether it is read/
write or read-only (write-protected).

Each program section appears in memory in contiguous MMU pages. 
That is, the .rodata section begins at offset 0 in an MMU page and sequen-
tially consumes pages in memory for all the data appearing in that section. 
The next section in memory (perhaps .data) begins at offset 0 in the next 
MMU page following the last page of the previous section. If that previous 
section (for example, .rodata) does not consume an integral multiple of 
4,096 bytes, padding space will be present between the end of that section’s 
data and the end of its last page, to guarantee that the next section begins 
on an MMU page boundary.

Each new section starts in its own MMU page because the MMU con-
trols access to memory by using page granularity. For example, the MMU 
controls whether a page in memory is readable/writable or read-only. For 
.rodata sections, you want the memory to be read-only. For the .data section, 
you want to allow reads and writes. Because the MMU can enforce these 
attributes only on a page-by-page basis, you cannot have .data section infor-
mation in the same MMU page as an .rodata section.
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Normally, all this is completely transparent to your code. Data you 
declare in a .data (or .bss) section is readable and writable, and data in 
an .rodata or .text section is read-only (.text sections are also executable). 
Beyond placing data in a particular section, you don’t have to worry too 
much about the page attributes.

You do need to worry about MMU page organization in memory in one 
situation. Sometimes it is convenient to access (read) data beyond the end 
of a data structure in memory. However, if that data structure is aligned 
with the end of an MMU page, accessing the next page in memory could 
be problematic. Some pages in memory are inaccessible; the MMU does not 
allow reading, writing, or execution to occur on that page. Attempting to 
do so will generate an ARM segmentation fault. This will typically crash your 
program, unless you have an exception handler in place to handle segmen-
tation faults. If you have a data access that crosses a page boundary, and 
the next page in memory is inaccessible, this will crash your program. For 
example, consider a half-word access to a byte object at the very end of an 
MMU page, as shown in Figure 3-2. 

Offset 0×FFF
 in page xxxx
 

Offset 0×0000 in  in
page xxxx + 1 

Page boundary

Hword access crossing
page boundary

 

Figure 3-2: Half-word access at the end of a memory-management page 

As a general rule, you should never read data beyond the end of a 
data structure. If for some reason you need to do so, ensure that it is legal 
to access the next page in memory. It goes without saying that you should 
never write data beyond the end of a given data structure; this is always 
incorrect and can create far more problems than just crashing your pro-
gram (including severe security issues). 

3.1.8  PIE and ASLR
As noted in Chapter 1, macOS forces all code to use a position-independent 
executables (PIE) form. Linux doesn’t absolutely require this, but it allows 
you to write PIE code if you choose. There are two main reasons for PIE 
code: shared libraries and security, which were covered in “Linux vs. macOS: 
Position-Independent Executables” on page XX. However, as the behavior of 
PIE code profoundly affects the way you write ARM assembly language, it is 
worthwhile to spend a little more time discussing PIE, and especially address 
space layout randomization (ASLR).
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ASLR is an attempt by the OS to thwart various exploits (hacks) that 
try to figure out where the code and data reside in an application. Prior to 
PIE and ASLR, most OSs always loaded the executable code and data to the 
same address in memory, making it easy for a hacker to patch or otherwise 
mess with the executable program. By loading the code and data sections 
into random memory locations, PIE/ASLR make it much more difficult for 
exploits to tap into the executing code. 

As a result of ASLR, the layout of an executing program in memory will 
not actually look like that in Figure 3-1. For one given instance of a program 
execution, it might look something like Figure 3-3. 

High addresses

Adrs=0x0  = 

Stack

Heap

Code (.text section/program instructions)

Read-only data (.rodata section)

Static (.data) variables

Uninitialized storage (.bss section) variables

Reserved by OS (typically 128kB) 

Random space

Random space

Random space

Random space

Random space

 

Figure 3-3: A possible memory layout for one execution of an application 

However, on the next run of the program, the sections will likely be 
rearranged and placed at different locations in memory. 

While PIE/ASLR makes it difficult for hackers to exploit your code, 
it also plays havoc with the ARM’s instruction set. Consider the following 
(legitimate) ARM ldr instruction: 

ldr w0, someWordVar  // Assume someWordVar is in .data:q. 
!

This would normally load the W0 register from the 32-bit variable 
someWordVar found in the .data section. This particular instruction uses the 
PC-relative addressing mode, which means that the instruction encodes an 
offset from the address of the ldr instruction to the someWordVar variable in 
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memory. However, if you assemble this program under macOS, you get the 
following error: 

error: unknown AArch64 fixup kind! 

Under Linux (Ubuntu and Raspberry Pi OS seem to be different; your 
mileage may vary), you get something like 

relocation truncated to fit: R_AARCH64_LD_PREL_LO19 against `.data' 

This is a real ARM64 instruction and should work. In fact 

ldr reg, =constant 

is just a special form of this instruction, and it does work. 
The problem is due to the ARM 32-bit instruction length. If you look 

up the encoding for the ldr instruction in the ARM reference manual, 
you’ll discover that it sets aside 19 bits for the address of the memory loca-
tion. This turns out to be an offset (a distance in bytes) from the address 
of the ldr instruction (that is, the value of the 19-bit field is added to the 
PC to get the actual memory address). Because it’s referencing data in the 
.text section, and everything is word-aligned in the text section, the 19-bit 
offset is actually a word offset, not a byte offset. This effectively gives the 
ldr instruction another 2 bits (the LO 2 bits will always be 0). This effec-
tive 21-bit offset allows the ldr instruction to access data at a location ±1MB 
around the ldr instruction. 

Unfortunately, when accessing data in the .data section, which the OS 
has been nice enough to place at a random address (probably farther than 
1MB away), the 21-bit range of the ldr instruction won’t be sufficient. This 
is why Gas complains about attempting to access a variable in the .data sec-
tion with the ldr instruction. As a bottom line, you can’t use that instruction 
to directly access data unless that data is also in the .text section and isn’t 
more than ±1MB away. 

3.1.9  The .pool Section
The .pool section is a Gas pseudo-section in your program. As noted previ-
ously, the following instruction loads a large constant into a register by plac-
ing that constant somewhere in memory, then loading the contents of that 
memory location into the destination register: 

ldr reg, =largeConstant 

In other words, this instruction is completely equivalent to either of the 
following: 

    ldr x0, a64_bit_constant 
    ldr w0, a32_bit_constant 
     . 
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     . 
     . 
// Somewhere in the .text section that will never 
// be executed as code: 

a64_bit_constant: .dword  The_Actual_64bit_Constant_Value 
a32_bit_constant: .word  The_Actual_32bit_Constant_Value 

Gas automatically figures out an appropriate place to put such con-
stants: near the instructions that reference them but out of the code path. 

If you’d like to control the placement of these constants in your .text 
section, you can use the .pool directive. Wherever you place this directive 
in your .text section (and it must be in the .text section), Gas will emit the 
constants it produces. Just make sure that if you put a .pool directive in 
your code, you place it after an unconditional branch or return instruction 
so that the program flow won’t attempt to execute that data as machine 
instructions. 

Normally, you don’t need to place a .pool directive in your source code, 
since Gas will do a reasonable job of finding a location to place its data. 
However, if you intend to also insert data of your own in the .text section, 
you may want to insert the .pool directive and place your data declarations 
immediately afterward. Note that the data after .pool is part of the .text sec-
tion, so you can continue to place machine instructions after the .text. 

	 3.2	 Gas Storage Allocation for Variables
Gas associates a current location counter with each of the declaration sections 
(.text, .data, .rodata, .bss, and any other named sections). These location 
counters initially contain 0. Whenever you declare a variable in one of these 
sections (or write code in a code section), Gas associates the current value 
of that section’s location counter with the label and bumps up the value of 
that location counter by the size of the object you’re declaring.

For example, assume that the following is the only .data declaration sec-
tion in a program:

    .data
bb: .byte  0        // Location counter = 0, size = 1
s:  .hword 0        // Location counter = 1, size = 2
w:  .word  0        // Location counter = 3, size = 4
d:  .dword 0        // Location counter = 7, size = 8
q:  .qword 0        // Location counter = 15, size = 16
                    // Location counter is now 31.

As you can see, variable declarations listed in a single .data section have 
contiguous offsets (location counter values) into the .data section. Given 
the preceding declaration, s will immediately follow bb in memory, w will 
immediately follow s in memory, d will immediately follow w, and so on. 
These offsets aren’t the actual runtime addresses of the variables. At run-
time, the system loads each section to a base address in memory. The linker 
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and the OS add the base address of the memory section to each of these 
location counter values (which we call displacements, or offsets) to produce 
the actual memory address of the variables.

OBTA INING T HE CUR R EN T LOCAT ION COUN T ER VA LUE

If you ever want to use the current location counter value in your program, Gas 
will substitute it for a single period (.) wherever a constant is allowed, as in the 
following example:

.dword . // Stores the address of this dword in memory

You’d normally use the . operator to compute lengths of sections of code, using 
something like the following:

lbl:  .byte 0, 1, 2, 3, 4
lbl2: .hword 55
size: .word . - lbl

The . - lbl expression computes the number of bytes between the lbl 
symbol and the size label. The . operator returns the location counter value at 
the beginning of the .word directive and does not include the 4 bytes that .word 
will emit to the output file.

Keep in mind that you may link other modules with your program (for 
example, from the C stdlib) or even additional .data sections in the same 
source file, and the linker has to merge the .data sections. Each individual 
section (even when it has the same name as another section) has its own 
location counter that starts from 0 when allocating storage for the variables 
in the section. Hence, the offset of an individual variable may have little 
bearing on its final memory address.

Gas allocates memory objects you declare in .rodata, .data, and .bss 
sections in completely different regions of memory. Therefore, you cannot 
assume that the following three memory objects appear in adjacent mem-
ory locations (indeed, they probably will not):

    .data
bb: .byte    0

    .section  .rodata, ""
w:  .word    0x1234

    .bss
d:  .dword   .-.

In fact, Gas will not even guarantee that variables you declare in 
separate .data (or other) sections are adjacent in memory, even if there is 
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nothing between the declarations in your code. For example, you cannot 
assume whether bb, w, and d are—or aren’t—in adjacent memory locations 
in the following declarations:

    .data
bb: .byte   0

    .data
w:  .word   0x1234

    .data
d:  .dword  0

If your code requires these variables to consume adjacent memory loca-
tions, you must declare them in the same .data section.

	 3.3	 Little-Endian and Big-Endian Data Organization
As you learned in “The Memory Subsystem” on page XX, the ARM stores mul-
tibyte data types in memory, with the LO byte at the lowest address in memory 
and the HO byte at the highest address (see Figure 1-6). This type of data 
organization in memory is known as little endian. Little-endian data organiza-
tion, in which the LO byte comes first and the HO byte comes last, is common 
in many modern CPUs. It is not, however, the only possible approach. 

Big-endian data organization reverses the order of the bytes in memory. 
The HO byte of the data structure appears first, in the lowest memory 
address, and the LO byte appears in the highest memory address. Table 3-1 
describes the memory organization for half words. 

Table 3-1: Half-Word Object Little- and Big-Endian Data Organization 

Data byte
Memory organization 
for little endian

Memory organization 
for big endian

0 (LO byte) base + 0 base + 1

1 (HO byte) base + 1 base + 0

Table 3-2 describes the memory organization for words. 

Table 3-2: Word Object Little- and Big-Endian Data Organization 

Data byte
Memory organization  
for little endian

Memory organization 
for big endian

0 (LO byte) base + 0 base + 3

1 base + 1 base + 2

2 base + 2 base + 1

3 (HO byte) base + 3 base + 0
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Table 3-3 describe the memory organization for double words. 

Table 3-3: Dword Object Little- and Big-Endian Data Organization 

Data byte
Memory organization  
for little endian

Memory organization 
for big endian

0 (LO byte) base + 0 base + 7

1 base + 1 base + 6

2 base + 2 base + 5

3 base + 3 base + 4

4 base + 4 base + 3

5 base + 5 base + 2

6 base + 6 base + 1

7 (HO byte) base + 7 base + 0

Normally, you wouldn’t be too concerned with big-endian memory 
organization on an ARM CPU. However, on occasion, you may need to 
deal with data produced by a different CPU (or by a protocol, such as 
Transmission Control Protocol/Internet Protocol, or TCP/IP) that uses  
big-endian organization as its canonical integer format. If you were to  
load a big-endian value in memory into a CPU register, the value would  
be incorrect. 

If you have a 16-bit big-endian value in memory and you load it into 
a register, its bytes will be swapped. For 16-bit values, you can correct this 
issue by using the rev16 instruction, which has the following syntax: 

rev16 regdest, regsrc 

Here, regdest and regsrc are any 32- or 64-bit general-purpose registers (both 
must be the same size). This instruction will swap the 2 bytes in each of the 
16-bit half-words in the source register; that is, this operates on hword0 and 
hword1 in a 32-bit register and on hword0, hword1, hword2, and hword3 in a 64-bit 
register. For example 

ldr     w1, =0x12345678 
rev16   w1, w1 

will produce 0x34127856 in the W1 register, having swapped bytes 0 and 1 
as well as bytes 2 and 3. 

If you have a 32-bit value in a register (32- or 64-bit), you can swap the  
4 bytes in that register by using the rev32 instruction: 

rev32 regdest, regsrc 

Again, the registers can be 32- or 64-bit, but both must be the same 
size. In a 32-bit register, this will swap bytes 0 and 3 as well as 1 and 2. In a 
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64-bit register, it will swap bytes 0 and 3, 1 and 2, 7 and 4, and 6 and 5 (see 
Figure 3-4). 

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

 

Figure 3-4: Operation of the rev32 instruction 

The rev instruction will swap bytes 7 and 0, 6 and 1, 5 and 2, and 4 and 3 
in a 64-bit register (see Figure 3-5).

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

 

Figure 3-5: Operation of the rev instruction 

The rev instruction accepts only 64-bit registers. 

	 3.4	 Memory Access
“The Memory Subsystem” on page XX describes how the ARM CPU fetches 
data from memory on the data bus. In an idealized CPU, the data bus is 
the size of the standard integer registers on the CPU; therefore, you would 
expect the ARM CPUs to have a 64-bit data bus. In practice, modern CPUs 
often make the physical data bus connection to main memory much larger 
in order to improve system performance. The bus brings in large chunks of 
data from memory in a single operation and places that data in the CPU’s 
cache, which acts as a buffer between the CPU and physical memory. 

From the CPU’s point of view, the cache is memory. Therefore, when 
the remainder of this section discusses memory, it’s generally talking about 
data sitting in the cache. As the system transparently maps memory accesses 
into the cache, we can discuss memory as though the cache were not present 
and discuss the advantages of the cache as necessary. 

On early processors predating the ARM, memory was arranged as an 
array of bytes (8-bit machines, such as the Intel 8088), half words (16-bit 
machines, such as the Intel 8086 and 80286), or words (32-bit machines, such 
as the 32-bit ARM CPUs). On a 16-bit machine, the LO bit of the address did 
not physically appear on the address bus. This means the addresses 126 and 
127 put the same bit pattern on the address bus (126, with an implicit 0 in bit 
position 0), as shown in Figure 3-6. 
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16-bit
CPU

Memory

Address = 126

Data = Memory[126]
LO 8 bits
HO 8 bits

120
121
122
123
124
125
126
127
128
129

 

Figure 3-6: The address and data bus for 16-bit  
processors 

When reading a byte, the CPU uses the LO bit of the address to select 
the LO byte or HO byte on the data bus. Figure 3-7 shows the process when 
accessing a byte at an even address (126 in this figure). 

16-bit
CPU

Memory

Address bus = 126

Byte data = Memory[126]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

 

Figure 3-7: Reading a byte from an even address on a 16-bit CPU 

Figure 3-8 shows memory access for the byte at an odd address (127 in 
this figure). Note that in both Figures 3-7 and 3-8, the address appearing 
on the address bus is 126. 
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120
121
122
123
124
125
126
127
128
129

LO 8 bits

Memory

Address bus = 126

Byte data = Memory[127]

16-bit

CPU

HO 8 bits

 

Figure 3-8: Reading a byte from an odd address on a 16-bit CPU 

What happens when this 16-bit CPU wants to access 16 bits of data at 
an odd address? For example, suppose that in these figures, the CPU reads 
the word at address 125. When the CPU puts address 125 on the address 
bus, the LO bit doesn’t physically appear. Therefore, the actual address on 
the bus is 124. If the CPU were to read the LO 8 bits off the data bus at this 
point, it would get the data at address 124, not address 125. 

Fortunately, the CPU is smart enough to figure out what’s going on 
here: it extracts the data from the HO 8 bits on the data bus and uses this 
as the LO 8 bits of the data operand. However, the HO 8 bits that the CPU 
needs are not found on the data bus. The CPU has to initiate a second  
read operation, placing address 126 on the address bus, to get the HO  
8 bits (these will be sitting in the LO 8 bits of the data bus, but the CPU  
can figure that out). It takes two memory cycles for this read operation to 
complete. Therefore, the instruction reading the data from memory will 
take longer to execute than it would have if the data had been read from  
an address that was an integral multiple of 2 (16-bit alignment). 

The same problem exists on 32-bit processors, except that the 32-bit 
data bus allows the CPU to read 4 bytes at a time. Reading a 32-bit value 
at an address that is not an integral multiple of 4 incurs the same perfor-
mance penalty. However, accessing a 16-bit operand at an odd address 
doesn’t always guarantee an extra memory cycle—only addresses that, 
when divided by 4, have a remainder of 3 incur the penalty. In particular,  
if you access a 16-bit value (on a 32-bit bus) at an address where the LO  
2 bits contain 0b01, the CPU can read the word in a single memory cycle,  
as shown in Figure 3-9. 
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CPU
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32-bit data bus
Word data = Memory[125]

120
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122
123
124
125
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127
128
129

LO 8 bits
HO 8 bits

 

Figure 3-9: Accessing a word on a 32-bit data bus 

Modern ARM CPUs with cache systems have largely eliminated this 
problem. As long as the data (1, 2, 4, or 8 bytes in size) is fully within a 
cache line—a processor-defined number of bytes—no memory cycle penalty 
occurs for an unaligned access. If the access does cross a cache-line bound-
ary, the CPU will run a little slower while it executes two memory opera-
tions to get (or store) the data. 

	 3.5	 Gas Support for Data Alignment
To write fast programs, you must ensure that you properly align data 
objects in memory. Proper alignment means that the starting address for 
an object is a multiple of a certain size—usually the size of an object, if the 
object’s size is a power of 2 for values up to 32 bytes in length. For objects 
greater than 32 bytes, aligning the object on an 8-, 16-, or 32-byte address 
boundary is probably sufficient. For objects fewer than 16 bytes, aligning 
the object at an address that is the next power of 2 greater than the object’s 
size is usually fine. 

As noted in the previous section, accessing data that is not aligned at 
an appropriate address may require extra time. Therefore, if you want to 
ensure that your program runs as rapidly as possible, you should try to 
align data objects according to their size. 

Data becomes misaligned whenever you allocate storage for different-
sized objects in adjacent memory locations. For example, if you declare a 
byte variable, it will consume 1 byte of storage, and the next variable you 
declare in that declaration section will have the address of that byte object 
plus 1. If the byte variable’s address happens to be an even address, the  
variable following that byte will start at an odd address. If that following  
variable is a half-word, word, or dword object, its starting address will not  
be optimal. 

In this section, we’ll explore ways to ensure that a variable is aligned 
at an appropriate starting address based on its size. Consider the following 
Gas variable declarations:
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    .data 
w:  .word  0 
bb: .byte  0 
s:  .hword 0 
w2: .word  0 
s2: .hword 0 
b2: .byte  0 
dw: .dword 0 

The first .data declaration in a program places its variables at an 
address that is an even multiple of 4,096 bytes. Whatever variable first 
appears in that .data declaration is guaranteed to be aligned on a reason-
able address. Each successive variable is allocated at an address that is the 
sum of the sizes of all the preceding variables, plus the starting address of 
that .data section. 

Therefore, assuming Gas allocates the variables in the previous example 
at a starting address of 4096, it will allocate them at the following addresses: 

                     // Start Adrs              Length 
w:    .word   0      //     4096                  4 
bb:   .byte   0      //     4100                  1 
s:    .hword  0      //     4101                  2 
w2:   .word   0      //     4103                  4 
s2:   .hword  0      //     4107                  2 
b2:   .byte   0      //     4109                  1 
dw:   .dword  0      //     4110                  8 

With the exception of the first variable (which is aligned on a 4KB 
boundary) and the byte variables (whose alignment doesn’t matter), all 
these variables are misaligned. The s, s2, and w2 variables start at odd 
addresses, and the dw variable is aligned on an even address that is not a 
multiple of 8 (word-aligned but not dword-aligned). 

An easy way to guarantee that your variables are aligned properly is to 
put all the dword variables first, the word variables second, the half-word 
variables third, and the byte variables last in the declaration, as shown here: 

      .data 
dw:   .dword  0 
w:    .word   0 
w2:   .word   0 
s:    .hword  0 
s2:   .hword  0 
bb:   .byte   0 
b2:   .byte   0 

This organization produces the following addresses in memory: 

                   //  Start Adrs         Length 
dw:    .dword  0   //     4096              8 
w2:    .word   0   //     4104              4 
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w3:    .word   0   //     4108              4 
s:     .hword  0   //     4112              2 
s2:    .hword  0   //     4114              2 
bb:    .byte   0   //     4116              1 
b2:    .byte   0   //     4117              1 

As you can see, these variables are all aligned at reasonable addresses. 
Unfortunately, it is rarely possible for you to arrange your variables in 

this manner. While many technical reasons make this alignment impossi-
ble, a good practical reason for not doing this is that it doesn’t let you orga-
nize your variable declarations by logical function (that is, you probably 
want to keep related variables next to one another, regardless of their size). 

To resolve this problem, Gas provides the .align and .balign directives. 
As noted in “The Anatomy of an Assembly Language Program” on page XX, 
the .align argument is a value that will be raised to that power of 2, and the 
.balign’s operand is an integer that must be a power of 2 (1, 2, 4, 8, 16, and 
so on). These directives ensure that the next memory object will be aligned 
to the specified size. 

By default, these directives will pad the data bytes they skip with 0s; in a 
.text section, Gas aligns the code by using nop (no-operation) instructions. 
If you would like to use a different padding value, these two directives allow 
a second operand: 

.align  pwr2Alignment, padValue 

.balign alignment, padValue 

Here, padValue must be an 8-bit constant, which these directives will use 
as the padding value. Gas also allows a third argument, which is the maxi-
mum allowable padding; see the Gas documentation for more details. 

The previous example could be rewritten, using the .align directive,  
as follows: 

     .data 
     .align  2   // Align on 4-byte boundary. 
w:   .word   0 
bb:  .byte   0 
     .align  1   // Align on 2-byte boundary. 
s:   .hword  0 
     .align  2   // Align on 4-byte boundary. 
w2:  .word   0 
s2:  .hword  0 
b2:  .byte   0 
     .align  3   // Align on 8-byte boundary. 
dw:  .dword  0 

If Gas determines that an .align directive’s current address (location 
counter value) is not an integral multiple of the specified value, Gas will 
quietly emit extra bytes of padding after the previous variable declaration 
until the current address in the .data section is a multiple of the specified 
value. This makes your data larger by a few bytes, in exchange for faster 
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access to it. Since your data will grow only slightly larger when you use this 
feature, this is probably a good trade-off. 

As a general rule, if you want the fastest possible access, choose an 
alignment value equal to the size of the object you want to align. That is, 
align half words to even boundaries with an .align 1 statement, words to 
4-byte boundaries with .align 2, double words to 8-byte boundaries with 
.align 3, and so on. If the object’s size is not a power of 2, align it to the 
next higher power of 2. 

Data alignment isn’t always necessary, since the cache architecture 
of modern ARM CPUs handles most misaligned data. Use the alignment 
directives only with variables for which speedy access is absolutely critical. 

	 3.6	 The ARM Memory Addressing Modes
For the most part, the ARM uses a very standard RISC load/store architecture. 
This means that it accomplishes almost all memory access by using instruc-
tions that load registers from memory or store the value held in registers to 
memory. The load and store instructions access memory by using memory 
addressing modes, mechanisms the CPU uses to determine the address of a 
memory location. The ARM memory addressing modes provide flexible 
access to memory, allowing you to easily access variables, arrays, structs, 
pointers, and other complex data types. Mastering ARM addressing modes 
is an important step toward mastering ARM assembly language. 

In addition to loads and stores, ARM uses atomic instructions. For the 
most part, these are variations of the load and store instructions, with a few 
extra bells and whistles needed for multiprocessing applications. Atomic 
instructions are beyond the scope of this text; for more information, see the 
ARM V8 reference manual. 

Until now, this book has presented only two mechanisms for access-
ing memory: the register-indirect addressing mode (for example, [X0]) 
introduced in Chapter 1, and the PC-relative addressing mode discussed in 
“PIE and ASLR” on page XX. However, the ARM provides more than half 
a dozen modes (depending on how you count them) for accessing data in 
memory. The following sections describe each of these modes. 

3.6.1  PC-Relative 
The PC-relative addressing mode is useful only for fetching values from the 
.text section, as the other sections will likely fall out of the ±1MB range of 
this addressing mode. Therefore, it is much easier to directly access con-
stant data in the .text section than it would be in the .rodata section (or 
another read-only section). 

A couple of issues arise when using the PC-relative addressing mode in 
the .text section. First, because the 19-bit offset buried in the 32-bit instruc-
tion encoding is shifted left 2 bits to produce a word offset (as discussed 
earlier), you can load only word and double-word values when using this 
addressing mode—no bytes or half words. For example, you can access byte 
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and half-word values in the .text section with the register-indirect address-
ing mode, but not with the PC-relative addressing mode. 

When accessing data in the .text section by using the PC-relative 
addressing mode, keep the following points in mind: 

•	 Under macOS, all labels in the .text section must be aligned on a 
4-byte boundary, even if the data associated with that label doesn’t 
require such alignment (such as bytes and half words). 

•	 Data values in the .text section cannot refer to other sections (for 
example, pointer constants, discussed in Chapter 4). However, such 
objects can refer to data within the .text section itself (this is important 
for jump tables, covered in Chapter 7). 

•	 The data must reside within ±1MB of the instruction(s) that reference 
it. For example, you cannot create an array of data that exceeds 1MB. 

•	 Only word and dword accesses are allowed when using the PC-relative 
addressing mode. 

•	 As the data resides in the .text section, it is read-only; you cannot put 
variables in the .text section. 

To use the PC-relative addressing mode, just reference the label you 
used to declare the object in the .text section: 

         ldr w0, wordVar 
           . 
           . 
           . 
wordVar: .word 12345 

Don’t forget that all data declarations you put in the .text section need 
to be out of the execution path, preferably in the .pool section. (You’ll see 
an exception to this rule in Chapter 5 when I discuss passing parameters in 
the code stream.) 

3.6.2  Register-Indirect 
Up to this point, most examples in this book have used the register-indirect 
addressing mode. Indirect means that the operand is not the actual address, 
but that the operand’s value specifies the memory address to use. In a register-
indirect addressing mode, the value held in the register is the address of 
the memory location to access. For example, the instruction 

ldr x0, [x1] 

tells the CPU to load X0’s value from the location whose address is cur-
rently in X1. The square brackets around X1 tell Gas to use the register-
indirect addressing mode. 

The ARM has 32 forms of this addressing mode, one for each of the 32 
general-purpose 64-bit registers (though X31 is not legal; use SP instead). 
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You cannot specify a 32-bit register in the square brackets when using an 
indirect addressing mode. 

Technically, you could load a 64-bit register with an arbitrary numeric 
value and access that location indirectly by using the register-indirect 
addressing mode: 

ldr x1, =12345678 
ldr x0, [x1]    // Attempts to access location 12345678 

Unfortunately (or fortunately, depending on how you look at it), this 
will probably cause the OS to generate a segmentation fault because it’s not 
always legal to access arbitrary memory locations. There are better ways to 
load the address of an object into a register, as you’ll see shortly. 

You can use the register-indirect addressing modes to access data ref-
erenced by a pointer, to step through array data, and, in general, whenever 
you need to modify an object’s address while your program is running. 

When using a register-indirect addressing mode, you refer to the value 
of a variable by its numeric memory address (the value you load into a regis-
ter) rather than by the name of the variable. This is an example of using an 
anonymous variable. 

The aoaa​.inc include file provides the lea macro, which you can use to 
take the address of a variable and put it into a 64-bit register:

lea x1, j 

After executing this lea instruction, you can use the [x1] register-
indirect addressing mode to indirectly access the value of j (which is how 
almost every example up to this point has accessed memory). In “Getting 
the Address of a Memory Object” on page XX, you’ll see how the lea 
macro works. 

3.6.3  Indirect-Plus-Offset
Consider the following data declaration, similar to other examples given in 
this book: 

bVar:  .byte 0, 1, 2, 3 

If you load X1 with the address of bVar, you can access that byte (0) by using 
an instruction such as this: 

ldrb w1, [x1]   // Load byte at bVar (0) into w1. 

To access the other 3 bytes following that 0 in memory, you can use the 
indirect-plus-offset addressing mode. Here is the mode’s syntax: 

[Xn|SP, #signed_expression] 

335-129461_ch01_1P.indd   143335-129461_ch01_1P.indd   143 02/05/24   9:32 PM02/05/24   9:32 PM



-1—
0—

+1—
144   Chapter 3

Xn|SP means X0 to X30 or SP, and signed_expression is a small integer expres-
sion in the range –256 to +255. This particular addressing mode will 
compute the sum of the address in Xn (n = 0 to 30, or SP) with the signed 
constant and use that as the effective memory address (the memory address  
to access). 

For example, if X1 contains the address of bVar from the previous exam-
ple, the following instruction will fetch the byte just beyond bVar (that is, the 
byte containing 1 in that example): 

ldrb  w0, [x1, #1] // Fetch byte at address X1 + 1. 

Once again, the 32-bit instruction size severely limits the range of this 
addressing mode (only 9 bits are available for the signed offset). If you 
need a greater offset, you must explicitly add a value to the address in X1 
(perhaps using a different register if you need to maintain the base address 
in X1). For example, the following code does this using X2 to hold the 
effective address: 

add  x2, x1, #2000  // Access location X1 + 2000. 
ldrb w2, [x2] 

This computes X2 = X1 + 2000 and loads W2 with the word at that address. 

3.6.4  Scaled Indirect-Plus-Offset
The scaled indirect-plus-offset addressing mode is a somewhat more complex 
variant of the indirect-plus-offset mode. It incorporates a 12-bit unsigned 
constant into the instruction encoding that is scaled (multiplied) by 1, 2, 
4, or 8, depending on the size of the data transfer. This provides a range 
extension to the 9-bit signed offset of the indirect-plus-offset mode. 

This addressing mode uses the same syntax as the indirect-plus-offset 
addressing mode, except that it doesn’t allow signed offsets: 

[Xn|SP, #unsigned_expression] 

For byte transfers (ldrb), the unsigned expression can be a value in 
the range 0 to 0xFFF (4,095). For half-word transfers (ldrh), the unsigned 
expression can be a value in the range 0 to 0x1FFE, but the offset must 
be even. For word transfers (ldr), the unsigned expression must be in the 
range 0 to 0x3FFC and must also be divisible by 4. For dword transfers, the 
unsigned expression must be in the range 0 to 0x7FF8 and must be divis-
ible by 8. As you’ll see in Chapter 4, these numbers work great for accessing 
elements of a byte, half-word, word, or double-word array. 

Generally, the assembler will automatically select between the indirect-
plus-offset and scaled indirect-plus-offset addressing modes, based on the 
value of the offset appearing in the addressing mode. Sometimes the choice 
might be ambiguous. For example: 

ldr  w0, [X2, #16] 
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Here, the assembler could choose the scaled or unscaled versions of the 
addressing mode. Typically, it would choose the scaled form. Its decision 
shouldn’t matter to your code; either form will load the appropriate word in 
memory into the W0 register. 

If, for some reason, you wish to explicitly specify the unscaled address-
ing mode, you can do so using the ldur and stur instructions (load or store 
register unscaled).

3.6.5  Pre-indexed
The pre-indexed addressing mode is very similar to the indirect-plus-offset 
addressing mode, insofar as it combines a 64-bit register and a signed 9-bit 
offset. However, this addressing mode copies the sum of the register and 
offset into the register before accessing memory. In the end, it accesses the 
same address as the indirect-plus-offset mode, but once the instruction fin-
ishes, the index register points into memory at the indexed location. This 
mode is useful for stepping through arrays and other data structures by 
incrementing the register after each access in a loop.

Here’s the syntax for the pre-indexed addressing mode: 

[Xn|SP, #signed_expression]!  // Xn|SP has the usual meaning. 

The ! at the end of this sequence differentiates the pre-indexed address-
ing mode. As with the indirect-plus-offset mode, the signed_expression value 
is limited—in this case, to 9 bits (–256 to +255). 

The following code fragment uses this addressing mode: 

bVar:  .byte 0, 1, 2, 3 
         . 
         . 
         . 
        lea  x0, bVar-1  // Initialize with adrs of bVar – 1. 
        Mov  x1, 4 
loop:   ldrb w2, [x0, #1]! 

        Do something with the byte in w2. 

        Subs x1, x1, #1 
        bne  loop 

On the first iteration of this loop, the addressing mode adds 1 to X0 so 
that it points at the first byte in the bVar array of 4 bytes. This also leaves X0 
pointing at that first byte. On each successful iteration of the loop, X0 is 
incremented by 1, accessing the next byte in the bVar array. 

The subs instruction will set the Z flag when it decrements X1 down to 0. 
When that happens, the bne (branch if Z = 0) instruction will fall through, 
terminating the loop. 
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3.6.6  Post-Indexed
The post-indexed addressing mode is very similar to the pre-indexed 
addressing mode, except it uses the value of the register as the memory 
address before updating the register with the signed immediate value. Here’s 
the syntax for the post-indexed addressing mode: 

[Xn|SP], #signed_expression  // Xn|SP has the usual meaning. 

Again, the signed_expression is limited to 9 bits (–256 to +255). 
The example of the previous section can be rewritten and slightly 

improved by using the post-indexed addressing mode: 

bVar:  .byte 0, 1, 2, 3 
         . 
         . 
         . 
        lea  x0, bVar 
        mov  x1, 4 
loop:   ldrb w2, [x0], #1 

        Do something with the byte in w2. 

        Subs x1, x1, #1 
        bne  loop 

This example starts with X0 pointing at bVar and ends with X0 pointing 
at the first byte beyond the (four-element) bVar array. On the first iteration 
of this loop, the ldr instruction first uses the value in X0, pointing at bVar, 
then increments X0 after fetching the byte where X0 points. 

3.6.7  Scaled-Indexed
The scaled-indexed addressing mode contains two register components 
(rather than a register and an immediate constant) that form the effective 
address. The syntax for this mode is the following: 

[Xn|SP, Xi] 
[Xn|SP, Wi, extend] 
[Xn|SP, Xi, extend] 

The first form is the easiest to understand: it computes the effective 
address (EA) by adding the values in Xn (or SP) and Xi. Generally, Xn (or 
SP) is known as the base address, and the value in Xi is the index (which 
must be X0 to X30 or XZR). The base address is the lowest memory address 
of an object, and the index is an offset from that base address (much like 
the immediate constants in the indirect-plus-offset addressing mode). This 
is just a simple base + index addressing mode: no scaling takes place. 
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W H Y X N|SP, NOT X 31? 

As noted in “The ARM64 CPU Architecture” on page XX, the stack pointer reg-
ister, SP, is the same as X31. However, if you try to use X31 as the base register 
in an addressing mode, Gas will report an error. This is because the ARM64 
CPU actually maps two separate registers to X31: SP and XZR (the zero regis-
ter). You use one of those register names rather than X31. 

In addressing modes, the ARM does not allow you to use XZR as a base 
register. You can, however, use SP as the base register. Conversely, XZR is 
allowed as an index register (though it’s somewhat redundant to do so), and SP 
is not allowed there. 

The base + index form is useful in these situations: 

•	 You have a pointer to an array object in a register (Xn, the base 
address), and you want to access an element of that array by using an 
integer index (typically in a memory variable). In this case, you would 
load the index into the index register (Xi) and use the base + index 
mode to access the actual element.

•	 You want to use the indirect-plus-offset addressing mode, but the offset 
is outside the range –256 to +255. In this case, you can load the larger 
offset into Xi and use the base + index addressing mode to access the 
memory location regardless of the offset. 

The second and third forms of the scaled-indexed addressing mode 
provide an extension/scaling operation, which is quite useful for indexing 
into arrays whose element size is larger than a byte. Of these two scaled-
indexed modes, one uses a 32-bit register as the index register, and the 
other uses a 64-bit register. 

The 32-bit form is convenient because most of the time indexes into an 
array are held in a 32-bit integer variable. If you load that 32-bit integer into 
a 32-bit register (Wi), you can easily use it as an index into an array with the 

[Xn, Wi, extend] 

form of the scaled-indexed addressing mode. 
Ultimately, all effective addresses turn out to be 64 bits. In particular, 

when the CPU adds Xn and Wi together, it must somehow extend the Wi 
index value to 64 bits prior to adding them. The extend operator tells Gas 
how to extend Wi to 64 bits. 

The simplest forms of extend are the following: 

[Xn|SP, Wi, uxtw] 
[Xn|SP, Wi, sxtw] 
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The [Xn|SP, Wi, uxtw] form zero-extends Wi to 64 bits before adding  
it to Xn, while the [Xn|SP, Wi, sxtw] form sign-extends Wi to 64 bits before 
the addition. 

Another form of the scaled-indexed addressing mode introduces the 
scaled component. This form allows you to load elements from an array of 
bytes, half words, words, or dwords scaled by the size of the array element 
(1, 2, 4, or 8 bytes). These particular forms are not stand-alone addressing 
modes that can be used with an arbitrary ldr or str instruction. Instead, 
each addressing mode form is tied to a specific instruction size. The follow-
ing is the allowable syntax for the ldrb/ldrsb and strb instructions (Wd is a 
32-bit destination register, and Ws is a 32-bit source register):

ldrb  Wd, [Xn|SP, Wi, sxtw #0]  // #0 is optional, 
ldrb  Wd, [Xn|SP, Wi, uxtw #0]  // 0 is default shift. 
ldrb  Wd, [Xn|SP, Xi, lsl #0] 

ldrsb Wd, [Xn|SP, Wi, sxtw #0] 
ldrsb Wd, [Xn|SP, Wi, uxtw #0] 
ldrsb Wd, [Xn|SP, Xi, lsl #0] 

strb  Ws, [Xn|SP, Wi, sxtw #0] 
strb  Ws, [Xn|SP, Wi, uxtw #0] 
strb  Ws, [Xn|SP, Xi, lsl #0] 

These forms zero- or sign-extend Wi (or Xi) and add the result with Xn 
to produce the EA. The previous instructions are equivalent to the follow-
ing (because the #0 is optional): 

ldrb  Wd, [Xn|SP, Wi, sxtw] 
ldrb  Wd, [Xn|SP, Wi, uxtw] 
ldrb  Wd, [Xn|SP, Xi] 

ldrsb Wd, [Xn|SP, Wi, sxtw] 
ldrsb Wd, [Xn|SP, Wi, uxtw] 
ldrsb Wd, [Xn|SP, Xi] 

strb  Ws, [Xn|SP, Wi, sxtw] 
strb  Ws, [Xn|SP, Wi, uxtw] 
strb  Ws, [Xn|SP, Xi] 

For the ldrh/ldrsh and strh instructions, you can specify either the 0 (×1) 
or 1 (×2) scale factor: 

ldrh  Wd, [Xn|SP, Wi, sxtw #1]  // #0 is also legal, or 
ldrh  Wd, [Xn|SP, Wi, uxtw #1]  // no immediate value (which 
ldrh  Wd, [Xn|SP, Xi, lsl #1]   // defaults to 0). 

ldrsh Wd, [Xn|SP, Wi, sxtw #1] 
ldrsh Wd, [Xn|SP, Wi, uxtw #1] 
ldrsh Wd, [Xn|SP, Xi, lsl #1] 
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strh  Ws, [Xn|SP, Wi, sxtw #1] 
strh  Ws, [Xn|SP, Wi, uxtw #1] 
strh  Ws, [Xn|SP, Xi, lsl #1] 

With a scaling factor of #1, these addressing modes compute Wi × 2 or 
Xi × 2 (after any zero or sign extension) and then add the result with the 
value in Xn to produce the EA. This scales the EA to access half-word values 
(2 bytes per array element). If the scaling factor is #0, no scaling occurs, as 
the scaling factor is 20. The preceding code must multiply Wi or Xi by an 
appropriate scaling factor, if needed. Loading or storing half words allows a 
scaling factor of only 0 or 1. 

For the 32-bit ldr instruction (Wd is the destination register) and str 
instruction (Ws is the 32-bit source register), the allowable scaling factors 
are 0 (×1) or 2 (×4): 

ldr  Wd, [Xn|SP, Wi, sxtw #2]  // #0 is also legal, or 
ldr  Wd, [Xn|SP, Wi, uxtw #2]  // no immediate value (which 
ldr  Wd, [Xn|SP, Xi, lsl #2]   // defaults to 0). 

str  Ws, [Xn|SP, Wi, sxtw #2] 
str  Ws, [Xn|SP, Wi, uxtw #2] 
str  Ws, [Xn|SP, Xi, lsl #2] 

Finally, for the 64-bit ldr and str instructions, the allowable scaling fac-
tors are 0 (×1) and 3 (×8): 

ldr  Xd, [Xn|SP, Wi, sxtw #3]  // #0 is also legal, or 
ldr  Xd, [Xn|SP, Wi, uxtw #3]  // no immediate value (which 
ldr  Xd, [Xn|SP, Xi, lsl #3]   // defaults to 0). 

str  Xs, [Xn|SP, Wi, sxtw #3] 
str  Xs, [Xn|SP, Wi, uxtw #3] 
str  Xs, [Xn|SP, Xi, lsl #3] 

You’ll see the main uses for the scaled-indexed addressing modes in the 
next chapter, when it discusses accessing elements of arrays. 

	 3.7	 Address Expressions
Often, when accessing variables and other objects in memory, you will need 
to access locations immediately before or after a variable rather than at 
the address of the variable. For example, when accessing an element of an 
array, or a field of a struct, the exact element or field is probably not at the 
address of the variable itself. Address expressions provide a mechanism to 
access memory at an offset from the variable’s address.

Consider the following legal Gas syntax for a memory address. This 
isn’t a new addressing mode but simply an extension of the PC-relative 
addressing mode:

varName + offset
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This form computes its effective address by adding the constant offset 
to the variable’s address. For example, the instruction

ldr W0, i + 4

loads the W0 register with the word in memory that is 4 bytes beyond the i 
object (which, presumably, is in the .text section; see Figure 3-10).

W0

0x1003
0x1002
0x1001
0x1000 (address of i)

0x1004 (i + 4)
0x1005
0x1006
0x1007ldr w0, i + 4

Figure 3-10: Using an address expression to access data beyond a variable

The offset value in this example must be a constant (for example, 3). If 
Index is a word variable, then varName + Index is not a legal address expression. 
If you wish to specify an index that varies at runtime, you must use one of 
the indirect or scaled-indexed addressing modes. Also remember that the 
offset in varName + offset is a byte address. This does not properly index into 
an array of objects unless varName is an array of bytes.

N O T E 	 The ARM CPU does not allow the use of the ldrb and ldrh instructions when using 
the PC-relative addressing mode. You can only load words or double words when 
using this addressing mode. Furthermore, because the instructions don’t encode the 
LO 2 bits of the offset, any offset you specify using an address expression must be a 
multiple of 4.

Until this point, the offset in the addressing mode examples has always 
been a single numeric constant. However, Gas also allows a constant expres-
sion anywhere an offset is legal. A constant expression consists of one or more 
constant terms manipulated by operators such as addition, subtraction, 
multiplication, division, and a wide variety of others, as shown in Table 3-4. 
Note that operators at the same precedence level are left-associative.
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Table 3-4: Gas Constant Expression Operators

Operator Precedence Description

+ 3 Unary plus (no effect on expression)

- 3 Unary minus (negates expression)

* 2 Multiplication

/ 2 Division

<< 2 Shift left

>> 2 Shift right

| 1 Bitwise OR

& 1 Bitwise AND

^ 1 Bitwise XOR

! 1 Bitwise AND-NOT

+ 0 Addition

- 0 Subtraction

Most address expressions, however, involve only addition, subtraction, 
multiplication, and sometimes division. Consider the following example:

ldr w0, X + 2*4

This instruction will move the byte at address X + 8 into the W0 register.
The value X + 2*4 is an address expression that is always computed at 

compile time, never while the program is running. When Gas encounters 
the preceding instruction, it calculates

2 × 4

on the spot and adds this result to the base address of X in the .text section. 
Gas encodes this single sum (base address of X plus 8) as part of the instruc-
tion; it does not emit extra instructions (that would waste time) to compute 
this sum for you at runtime. Because Gas computes the value of address 
expressions at compile time, and therefore Gas cannot know the runtime 
value of a variable while it is compiling the program, all components of the 
expression must be constants.

Address expressions are useful for accessing the data in memory beyond 
a variable, particularly when you’ve used directives like .byte, .hword, .word, 
and so on in a .data or .text section to tack on additional values after a data 
declaration. For example, consider the program in Listing 3-1 that uses 
address expressions to access the four consecutive words associated with 
memory object i (each word is 4 bytes apart in memory).

// Listing3-1.S
//
// Demonstrates address expressions
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#include "aoaa​.inc"

            .data
saveLR:     .dword      0
outputVal:  .word       0

ttlStr:     .asciz      "Listing 3-1"
fmtStr1:    .asciz      "i[0]=%d "
fmtStr2:    .asciz      "i[1]=%d "
fmtStr3:    .asciz      "i[2]=%d "
fmtStr4:    .asciz      "i[3]=%d\n"

            .text
            .extern     printf

            .align      2
i:          .word       0, 1, 2, 3

// Return program title to C++ program:

            .global     getTitle
getTitle:
            lea         x0, ttlStr
            ret

// Here is the asmMain function:

            .global     asmMain
asmMain:

// "Magic" instruction offered without
// explanation at this point:

            sub     sp, sp, #256

// Save LR so we can return to the C++
// program later:

            lea     x0, saveLR
            str     lr, [x0]

// Demonstrate the use of address expressions:

            lea     x0, fmtStr1
          1 ldr     w1, i + 0
            lea     x2, outputVal
            str     w1, [x2]
            vparm2  outputVal
            bl      printf

            lea     x0, fmtStr2
          2 ldr     w1, i + 4
            lea     x2, outputVal
            str     w1, [x2]
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            vparm2  outputVal
            bl      printf

            lea     x0, fmtStr3
          3 ldr     w1, i + 8
            lea     x2, outputVal
            str     w1, [x2]
            vparm2  outputVal
            bl      printf

            lea     x0, fmtStr4
          4 ldr     w1, i + 12
            lea     x2, outputVal
            str     w1, [x2]
            vparm2  outputVal
            bl      printf

            lea     x0, saveLR
            ldr     lr, [x0]
            add     sp, sp, #256
            ret

Loading W1 from location i + 0 fetches 0 from the word array 1. 
Loading W1 from location i + 4 fetches 1 from the second word in the array, 
located 4 bytes beyond the first element 2. Loading W1 from location i + 8  
fetches 2 from the third word in the array 3, located 8 bytes beyond the 
first element. Loading W1 from location i + 12 fetches 3 from the fourth 
word in the array 4, located 12 bytes beyond the first element.

Here’s the program’s output:

$ ./build Listing3-1
$ ./Listing3-1
Calling Listing 3-1:
i[0]=0 i[1]=1 i[2]=2 i[3]=3
Listing 3-1 terminated

Because the value at the address of i is 0, the output displays the four 
values 0, 1, 2, and 3 as though they were array elements. The address expres-
sion i + 4 tells Gas to fetch the word appearing at i’s address plus 4. This is 
the value 1, because the .word statement in this program emits the value 1 to 
the .text segment immediately after the (word/4-byte) value 0. Likewise, for 
i + 4 and i + 8, this program displays the values 2 and 3.

	 3.8	 Getting the Address of a Memory Object
Up to this point, this book has used the lea macro to obtain the address of 
a memory object. Now that this chapter has provided the necessary prereq-
uisite information, instead of treating lea like a black box, it’s time to look 
behind the curtains to see what this macro is doing for you.
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The ARM CPU provides two instructions for computing the effective 
address of a symbol in an assembly language program. The first is adr:

adr Xd, label

This instruction loads the 64-bit destination register (Xd) with the 
address of the specified label. Because instruction encodings (operation 
codes, or opcodes) are limited to 32 bits, a huge caveat is attached to adr: 
it has room for only a 21-bit offset within the opcode, so label must be a 
PC-relative address within ±1MB of the adr instruction. This effectively lim-
its adr to taking the address of symbols within the .text section.

To rectify this situation, the ARM CPU also provides the adrp (address 
of a page) instruction. This instruction has roughly the same generic syntax 
as adr:

adrp Xd, label

The instruction loads the address of the MMU page containing the 
label into the destination register. By adding the offset of the label into that 
page to the value in Xd, you can obtain the actual address of the memory 
object, using code that looks something like this:

adrp Xd, label
add  Xd, Xd, page_offset_of_label

At this point, Xd will contain the address of label.
This scheme has a couple of issues: first, computing the page offset of 

the label symbol is done differently in macOS versus Linux. Second, when 
you use the syntax just given to try the adrp instruction, you’ll find that Gas 
rejects this on macOS.

Let’s first consider the Linux solutions to these problems, as they’re a 
little simpler than those for macOS. If you’re not creating a PIE applica-
tion and the symbol is less than ±1MB away, you don’t have to use the adrp 
instruction. Instead, you can get by with the single adr instruction. If the 
data is more than ±1MB from the adr, you must use the adrp version. If you 
need to reference a memory object outside the .text section, you must use 
the adrp/add sequence. Here’s the code to do this:

adrp x0, label
add  x0, x0, :lo12:label

The :lo12: item is a special operator that tells Gas to extract the LO  
12 bits of label’s relocatable address; this value is the index into a 4,096-byte 
memory management page. For more information on this operator, see 
“For More Information” on page XX. Unfortunately, the macOS assembler 
uses a completely different syntax to obtain the LO 12 bits of an address; 
you must use the following instead:
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adrp x0, label@PAGE
add  x0, x0, label@PAGEOFF

The lea macro resolves this issue, automatically expanding into the 
appropriate sequence for whichever OS you’re using.

L INU X V S. M ACOS: A BSOLU T E A DDR ESSES

Apple’s macOS (and presumably, iOS, iPadOS, and so on) is far more restric-
tive about what you can and cannot do in a PIE program. Specifically, macOS 
does not allow any absolute pointers in your .text section that reference other 
sections. Linux, on the other hand, doesn’t have a problem with this at all, in 
either PIE or non-PIE mode.

For example, say you’re working in Linux and have the following symbol in 
your .data section:

var: .word 55

You can use the instruction

ldr x0, =var

to load the address of that symbol into X0. If you try to use this instruction in 
macOS, however, the program will give the following complaint:

ld: Absolute addressing not allowed in arm64 code but used in
          'noPrint' referencing 'var'

Likewise, if you put the statement

ptrToVar: .dword var

in your .text section somewhere, Linux is perfectly happy with it, but macOS 
will reject it, using roughly the same message.

Pointers into the .text section from other sections are perfectly acceptable 
to Gas under macOS. Apparently, Apple thinks that the only way hackers are 
going to determine your data memory location is by looking for addresses 
buried in the executable code, while pointers in your .data, .rodata, and other 
sections are immune to such attacks.

Ultimately, this means that you’ll need to use the adrp instruction (or the lea 
macro) to obtain at least your first pointer out of the .text section. This makes 
assembly language programming a touch more difficult under macOS than 
under Linux. Fortunately, the lea macro helps smooth out these issues.
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	 3.9	 The Push and Pop Operations
The ARM maintains a hardware stack in the stack segment of memory (for 
which the OS reserves the storage). The stack is a dynamic data structure 
that grows and shrinks according to certain needs of the program. It also 
stores important information about the program, including local variables, 
subroutine information, and temporary data.

The ARM CPU controls its stack via the SP register. When your pro-
gram begins execution, the OS initializes SP with the address of the last 
memory location in the stack memory segment. Data is written to the stack 
segment by pushing data onto the stack and popping it off the stack.

The ARM stack must always be 16-byte aligned—that is, the SP register 
must always contain a value that is a multiple of 16. If you load the SP reg-
ister with a value that is not 16-byte aligned, the application will immedi-
ately terminate with a bus error fault. One of the stack’s primary purposes 
is to provide a temporary storage area where you can save things such as 
register values. You will typically push a register’s value onto the stack, do 
some work (such as calling a function) that uses the register, and then pop 
that value off the stack and back into the register when you want to restore 
its value. However, the general-purpose registers are only 64 bits (8 bytes); 
pushing a dword value on the stack will not leave it 16-byte aligned, which 
will crash the system.

In this section, I’ll describe how to push and pop register values. Then 
I’ll present three solutions to the problem of pushing dword values that 
don’t leave the stack 16-byte aligned: wasting storage; pushing two registers 
simultaneously; and reserving storage on the stack, then moving the regis-
ter’s data into this reserved area.

3.9.1  Using Double Loads and Stores
The ldp instruction will load two registers from memory simultaneously. 
The generic syntax for this instruction is shown here:

ldp  Xd1, Xd2, mem  // mem is any addressing mode
ldp  Wd1, Wd2, mem  // except PC-relative.

The first form will load Xd1 from the memory location specified by mem 
and Xd2 from the memory location 8 bytes later. The second form will load Wd1 
from the specified memory location and Wd2 from the location 4 bytes later.

The stp instruction has a similar syntax; it stores a pair of registers into 
adjacent memory locations:

stp  Xd1, Xd2, mem  // Store Xd1 to mem, Xd2 to mem + 8.
stp  Wd1, Wd2, mem  // Store Wd1 to mem, Wd2 to mem + 4.
                   // mem is any addressing mode except
                   // PC-relative.
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These instructions have many uses. With respect to using the stack, 
however, the forms that load and store a pair of 64-bit registers will manipu-
late 16 bytes at a time—exactly what you need when pushing and popping 
data on the stack.

3.9.2  Executing the Basic Push Operation
Many CPUs, such as the Intel x86-64, provide an explicit instruction that 
will push a register onto the stack. Because of the 16-byte stack alignment 
requirement, you can’t push a single 8-byte register onto the stack (without 
creating a stack fault). However, if you’re willing to use 16 bytes of space on 
the stack to hold a single register’s value, you can push that register’s value 
on the stack with the following instruction: 

str Xs, [sp, #-16]! 

Remember, the pre-indexed addressing mode will first add –16 to SP 
and then store Xs (the source register) at the new location pointed at by 
SP. This store operation writes only to the LO 8 bytes of the 16-byte block 
created by dropping SP down by 16 (wasting the HO 8 bytes). However, this 
scheme keeps the CPU happy, so you won’t get a bus error. 

This push operation does the following: 

SP := SP - 16 
[SP] := Xs 

For example, assuming that SP contains 0x00FF_FFE0, the instruction 

str x0, [sp, #-16]! 

will set SP to 0x00FF_FFD0 and store the current value of X0 into memory 
location 0x00FF_FFD0, as Figures 3-11 and 3-12 show. 

Before

    str x0, [sp, #-16]!

instruction

X0

SP

00FF_FFF0
00FF_FFEC
00FF_FFE8
00FF_FFE4
00FF_FFE0
00FF_FFDC
00FF_FFD8
00FF_FFD4
00FF_FFD0
00FF_FFCC
00FF_FFC8

 

Figure 3-11: The stack segment before the str x0, [sp, #-16]! operation 

After the str instruction, the stack looks like Figure 3-12. 
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After

    str x0, [sp, #-16]!

instruction

SP

00FF_FFF0
00FF_FFEC
00FF_FFE8
00FF_FFE4
00FF_FFE0
00FF_FFDC
00FF_FFD8
00FF_FFD4
00FF_FFD0
00FF_FFCC
00FF_FFC8

X0 value
on stack

X0

 

Figure 3-12: The stack segment after the str x0, [sp, #-16]! operation 

Although this wastes 8 bytes of space on the stack (at addresses 
0x00FF_FFD8 through 0x00FF_FFDF), the usage is probably temporary, 
and the stack space will be reclaimed when the program pops the data off 
the stack later. 

3.9.3  Executing the Basic Pop Operation
The pop operation can be handled using the post-indexed addressing 
mode and a ldr instruction: 

ldr Xd, [sp], #16 

This instruction fetches the data from the stack, where SP is pointing, 
and copies that data into the destination register (Xd). When the opera-
tion is complete, this instruction adjusts SP by 16, restoring it to its original 
value (its value before the push operation). Figure 3-13 shows the stack 
before the pop operation. 

Before

ldr x0, [sp], #16

instruction

00FF_FFF0
00FF_FFEC
00FF_FFE8
00FF_FFE4
00FF_FFE0
00FF_FFDC
00FF_FFD8
00FF_FFD4
00FF_FFD0
00FF_FFCC
00FF_FFC8

X0 value
on stackSP

X0

 

Figure 3-13: Before the pop operation 

Figure 3-14 shows the stack organization after executing ldr. 
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After

    ldr x0, [sp], #16

instruction

00FF_FFF0
00FF_FFEC
00FF_FFE8
00FF_FFE4
00FF_FFE0
00FF_FFDC
00FF_FFD8
00FF_FFD4
00FF_FFD0
00FF_FFCC
00FF_FFC8

X0 value
on stack

SP

X0 value from stack

 

Figure 3-14: After the pop operation 

Popping a value does not erase the value in memory; it just adjusts the 
stack pointer so that it points at the next value above the popped value. 
However, never attempt to access a value you’ve popped off the stack. The 
next time something is pushed onto the stack, the popped value will be 
obliterated. Because your code isn’t the only thing that uses the stack (for 
example, the OS uses the stack to do subroutines), you cannot rely on data 
remaining in stack memory once you’ve popped it off the stack. 

3.9.4  Pushing and Popping Registers in Other Ways
If you need to preserve at least two registers, you can reclaim the wasted 
space shown in Figures 3-11 and 3-12 by using the stp instruction rather 
than str. The following code fragment demonstrates how to push and pop 
both X0 and X7 simultaneously:

stp  x0, x7, [sp, #-16]!
 .
 .   // Use X0 and X7 for other purposes.
 .
ldp  x0, x7, [sp], #16  // Restore X0 and X7.

The third way to push data on the stack is to drop SP down by a mul-
tiple of 16 bytes and then store the value into the stack area by indexing  
off the SP register. The following code does basically the same thing as the 
stp/ldp pair:

sub  sp, sp, #16   // Make room for X0 and X7.
stp  x0, x7, [sp]
 .
 .   // Use X0 and X7 for other purposes.
 .
ldp x0, x7, [sp]
add sp, sp, #16
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While this clearly takes more instructions (and, therefore, takes longer 
to execute), it’s possible to reserve the stack storage only once within a func-
tion and reuse that space throughout the execution of the function. You’ll 
see examples of this in Chapter 5.

3.9.5  Preserving Register Values on the Stack
As you’ve seen in previous examples, the stack is a great place to temporar-
ily preserve registers so they can be used for other purposes. Consider the 
following program outline:

Some instructions that use the X20 register.

Some instructions that need to use X20, for a
different purpose than the above instructions.

Some instructions that need the original value in X20.

The push and pop operations are perfect for this situation. By insert-
ing a push sequence before the middle sequence, and a pop sequence 
after the middle sequence, you can preserve the value in X20 across those 
calculations:

Some instructions that use the X20 register.

     str x20, [sp, #-16]!

Some instructions that need to use X20, for a
different purpose than the above instructions.

     ldr x20, [sp], #16

Some instructions that need the original value in X20.

This push sequence copies the data computed in the first sequence of 
instructions onto the stack. Now the middle sequence of instructions can use 
X20 for any purpose it chooses. After the middle sequence of instructions 
finishes, the pop sequence restores the value in X20 so the last sequence of 
instructions can use the original value in X20.

3.9.6  Saving Function Return Addresses on the Stack
Throughout the example programs up to this point, I’ve preserved the 
return address appearing in the link register (LR) by using instructions like 
the following:

lea x0, saveLR
str lr, [x0]
 .
 .
 .
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lea x0, saveLR
ldr lr, [x0]
ret

I’ve also mentioned that this is a truly horrible way of preserving the 
value in LR. It takes six instructions to accomplish (remember, lea expands 
into two instructions), making it slower and bulkier than it needs to be. 
This scheme also creates problems when you have one user-written function 
calling another: all of a sudden, you need two separate saveLR variables, one 
for each function. In the presence of recursion (see Chapter 5) or, worse, 
multithreaded code, this mechanism fails completely.

Fortunately, saving return addresses in the stack is the perfect solution. 
The stack’s LIFO structure (see the next section) completely emulates the way 
(nested) function calls and returns work, and it takes only a single instruction 
to push LR onto the stack or pop LR off the stack. The earlier code sequence 
can be easily replaced by:

str lr, [sp, #-16]!
 .
 .
 .
ldr lr, [sp], #16
ret

Using the stack to save and restore the LR register is probably the most 
common use of the stack. Chapter 5 discusses managing return addresses 
and other function-related values in much greater depth.

	 3.10	 Pushing and Popping Stack Data
You can push more than one value onto the stack without first popping  
previous values off the stack. However, the stack is a last-in, first-out (LIFO)  
data structure, so you must be careful in the way you push and pop mul-
tiple values.

For example, suppose you want to preserve X0 and X1 across a block of 
instructions. The following code demonstrates the obvious (but incorrect) 
way to handle this:

str  x0, [sp, #-16]!
str  x1, [sp, #-16]!
       Code that uses X0 and X1 goes here.
ldr  x0, [sp], #16
ldr  x1, [sp], #16

Unfortunately, this code will not work properly! Figures 3-15 through 3-18 
show the problem, with each box in these figures representing 8 bytes (note 
the addresses). Because this code pushes X0 first and X1 second, the stack 
pointer is left pointing at X1’s value on the stack.
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X0 value

After

       str x0, [sp, #-16]!

instruction
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

SP

Figure 3-15: The stack after pushing X0

Figure 3-16 shows the stack after pushing the second register (X1).

X0 value

After

str x1, [sp, #-16]!       

instruction
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

X1 valueSP

Figure 3-16: The stack after pushing X1

When the ldr x0, [sp], #16 instruction comes along, it removes the 
value that was originally in X1 from the stack and places it in X0 (see 
Figure 3-17).
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X0 value

After

ldr x0, [sp], #16

instruction 00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

X1 valueX1 valueX0

SP

Figure 3-17: The stack after popping X0

Likewise, the ldr x1, [sp], #16 instruction pops the value that was origi-
nally in X0 into the X1 register. In the end, this code manages to swap the 
values in the registers by popping them in the same order that it pushes 
them (see Figure 3-18).

X0 value

After

       ldr x1, [sp], #16

instruction
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

X1 valueX1 valueX0

X0 valueX1

SP

Figure 3-18: The stack after popping X1

To rectify this problem, because the stack is a LIFO data structure, the 
first thing you must pop is the last thing you push onto the stack. Therefore, 
always pop values in the reverse order that you push them.

The correction to the previous code is shown here:

str  x0, [sp, #-16]!
str  x1, [sp, #-16]!
   Code that uses X0 and X1 goes here.
ldr  x1, [sp], #16
ldr  x0, [sp], #16
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Also remember to always pop exactly the same number of bytes that you push. 
In general, this means you’ll need exactly the same the number of pushes 
and pops. If you have too few pops, you will leave data on the stack, which 
may confuse the running program. If you have too many pops, you will 
accidentally remove previously pushed data, often with disastrous results.

As a corollary, be careful when pushing and popping data within a loop. It’s 
easy to put the pushes in a loop and leave the pops outside the loop (or 
vice versa), creating an inconsistent stack. Remember, it’s the execution 
of the push and pop operations that matters, not the number of push and 
pop operations that appear in your program. At runtime, the number (and 
order) of the push operations the program executes must match the num-
ber (and reverse order) of the pop operations.

Finally, remember that the ARM requires the stack to be aligned on a 16-byte 
boundary. If you push and pop items on the stack (or use any other instruc-
tions that manipulate the stack), make sure that the stack is aligned on a 
16-byte boundary before calling any functions or procedures that adhere to 
the ARM requirements.

	 3.11	 Removing Data from the Stack Without Popping It
You may often discover that you’ve pushed data you no longer need onto 
the stack. Although you could pop the data into an unused register, there 
is an easier way to remove unwanted data from the stack: simply adjust the 
value in the SP register to skip over the unwanted data on the stack. 

Consider the following dilemma (in pseudocode, not actual assembly 
language): 

str x0, [sp, #-16]!  // Push X0. 
str x1, [sp, #-16]!  // Push X1. 

Some code that winds up computing some values we want 
to keep in X0 and X1. 

if( Calculation_was_performed ) then 

      // Whoops, we don't want to pop X0 and X1! 
      // What to do here? 

else 

      // No calculation, so restore X1, X0. 

      ldr x1, [sp], #16 
      ldr x0, [sp], #16 

endif; 

Within the then section of the if statement, this code wants to remove 
the old values of X0 and X1 without otherwise affecting any registers or 
memory locations. How can you do this? 
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Because the SP register contains the memory address of the item on the 
top of the stack, we can remove the item from the top by adding the size  
of that item to the SP register. In the preceding example, we wanted to 
remove two dword items from the top. We can easily accomplish this by add-
ing 16 to the stack pointer: 

str x0, [sp, #-16]!  // Push X0 
str x1, [sp, #-16]!  // Push X1 

Some code that winds up computing some values we want to keep 
into rax and rbx. 

if( Calculation_was_performed ) then 

     // Remove unneeded X0/X1 values 
     // from the stack. 

     add sp, sp, #32 

else 

     // No calculation, so restore X1, X0. 

     ldr x1, [sp], #16 
     ldr x0, [sp], #16 

endif; 

Effectively, this code pops the data off the stack without moving it any-
where. This code is faster than two dummy pop operations, because it can 
remove any number of bytes from the stack with a single add instruction. 

Remember to keep the stack aligned on a quad-word (16-byte) bound-
ary. This means you should always add a constant that is a multiple of 16 to 
SP when removing data from the stack. 

	 3.12	 Accessing Data Pushed onto the Stack  
		  Without Popping It

Once in a while, you’ll push data onto the stack and will want to get a copy of 
that data’s value, or perhaps you’ll want to change that data’s value without 
actually popping the data off the stack (that is, you wish to pop the data off 
the stack at a later time). The ARM [SP, #±offset] addressing mode provides 
the mechanism for this. 

Consider the stack after the execution of the following instruction: 

stp x0, x1, [sp, #-16]!  // Push X0 and X1 

This produces the stack result shown in Figure 3-19. 
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X0 value
X1 value

RSP + 40
RSP + 32
RSP + 24
RSP + 16
RSP + 8
RSP + 0
RSP – 8
RSP – 16

SP

 

Figure 3-19: The stack after pushing X0 and X1 

If you wanted to access the original X1 value without removing it from 
the stack, you could cheat by popping the value, then immediately pushing 
it again. Suppose, however, that you wish to access X0’s old value or another 
value even farther up the stack. Popping all the intermediate values and 
then pushing them back onto the stack is problematic at best, impossible  
at worst. 

However, as Figure 3-19 shows, each value pushed on the stack is at a 
certain offset from the SP register in memory. Therefore, we can use the 
[SP, #±offset] addressing mode to gain direct access to the value we are 
interested in. In the preceding example, you can reload X0 with its original 
value by using this single instruction: 

ldr x0, [sp, #8] 

This code copies the 8 bytes starting at memory address SP + 8 into the 
X0 register. This value just happens to be the previous value of X0 that was 
pushed onto the stack. You can use this same technique to access other data 
values you’ve pushed onto the stack. 

Don’t forget that the offsets of values from SP into the stack change 
every time you push or pop data. Abusing this feature can create code that 
is hard to modify; using this feature throughout your code will make it dif-
ficult to push and pop other data items between the point where you first 
push data onto the stack and the point where you decide to access that data 
again using the [SP, #±offset] memory addressing mode. 

The previous section pointed out how to remove data from the stack by 
adding a constant to the SP register. That pseudocode example could prob-
ably be written more safely as this: 

stp  x0, x1, [sp, #-16]! 

Some code that winds up computing some values we want 
to keep into X0 and X1. 

if( Calculation_was_performed ) then 

     // Overwrite saved values on the stack with 
     // new X0/X1 values (so the pops that 
     // follow won't change the values in X0/X1). 
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     stp  x0, x1, [sp, #8] 

endif; 
ldp  x0, x1, [sp], #16 

In this code sequence, the calculated result was stored over the top of 
the values saved on the stack. Later, when the program pops the values, it 
loads these calculated values into X0 and X1. 

T HE “M AGIC” INS T RUC T IONS

In most of the example programs in this book so far, the following lines of code 
have appeared in asmMain (and in other functions):

// "Magic" instruction offered without
// explanation at this point:

sub     sp, sp, #256
 .
 .
 .
add     sp, sp, #256

At this point, it should be clearer what this code is doing: reserving storage on 
the stack (and removing that storage before returning from the function).

Chapter 5 covers this scheme in greater detail when it discusses local vari-
ables and parameter functions. For the time being, just know that the purpose of 
these statements is to reserve storage on the stack for parameters being passed 
to the printf() function via the vparmn macros.

	 3.13	 Moving On
This chapter discussed memory organization and access, and how to cre-
ate and access memory variables on the ARM CPU. It went over problems 
that can occur when accessing data beyond the end of a data structure that 
crosses over into a new MMU page, then discussed little- and big-endian 
memory organizations and how to use the ARM memory addressing modes 
and address expressions to access those memory objects in multiple ways. 
You learned how to align data in memory to improve performance, how  
to obtain the address of a memory object, and the purpose of the ARM 
stack structure.

Thus far, this book has generally employed only basic data types such 
as different-sized integers, characters, Boolean objects, and floating-point 
numbers. Fancier data types, such as pointers, arrays, strings, and structs 
are the subject of the next chapter.
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	 3.14	 For More Information
See https://ftp​.gnu​.org​/old​-gnu​/Manuals​/gas​-2​.9​.1​/html​_chapter​/as​_toc​.html 
for details on the GNU assembler.

Learn more about the GNU linker at https://ftp​.gnu​.org​/old​-gnu​/Manuals​/ 
ld​-2​.9​.1​/html​_mono​/ld​.html.

For more about the macOS (LLVM) linker, see https://lld​.llvm​.org.

Visit the ARM developer website at https://developer​.arm​.com for more on 
ARM CPUs.

Wikipedia offers an explanation of address space layout randomization 
at https://en​.wikipedia​.org​/wiki​/Address​_space​_layout​_randomization.

To better understand position-independent executables, see https://en​
.wikipedia​.org​/wiki​/Position​-independent​_code.

For information on the :lo12: operator, see the “Assemb.ly Expressions” 
section in the document downloadable from https://developer​.arm​.com​/
documentation​/100067​/0612​/armclang​-Integrated​-Assembler.

T ES T YOURSEL F

	 1.	 The PC-relative addressing mode indexes off which 64-bit register?

	 2.	 What does opcode stand for?

	 3.	 What type of data is the PC-relative addressing mode typically used for?

	 4.	 What is the address range of the PC-relative addressing mode?

	 5.	 In a register-indirect addressing mode, what does the register contain?

	 6.	 Which of the following registers is valid for use with the register-indirect 
addressing mode?

a.	 W0

b.	 X0

c.	 XZR

d.	 SP

	 7.	 What instruction would you normally use to load the address of a memory 
object into a register?

	 8.	 What is an effective address?

	 9.	 How would you align a variable in the .data section to an 8-byte 
boundary?

10.	 What does MMU stand for?

11.	 What is an address expression?

12.	 What is the difference between a big-endian value and a little-endian 
value?
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13.	 If W0 contains a 32-bit big-endian value, what instruction could you use to 
convert it to a little-endian value?

14.	 If W0 contains a 16-bit little-endian value, what instruction could you use 
to convert it to a big-endian value?

15.	 If X0 contains a 64-bit big-endian value, what instruction could you use to 
convert it to a little-endian value?

16.	 Explain, step-by-step, what the str X0, [sp, #-16]! instruction does.

17.	 Explain, step-by-step, what the ldr X0, [sp], #16 instruction does.

18.	 When using the push and pop operations to preserve registers, you must 
always pop the registers in the ________ order that you pushed them.

19.	 What does LIFO stand for?
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