
—-1
—0
—+1

Chapters 1 and 2 showed you how to declare
and access simple variables in an assem-

bly language program. This chapter fully
explains ARM memory access. You’ll learn how

to efficiently organize your variable declarations to
speed up access to their data. You’ll also learn about the
ARM stack and how to manipulate data on it.

This chapter discusses several important concepts, including the
following:

•	 Memory organization

•	 Memory access and the memory management unit

•	 Position-independent executables and address space layout
randomization

•	 Variable storage and data alignment

•	 Endianness (memory byte order)

3
M E M O R Y A C C E S S

A N D O R G A N I Z A T I O N

335-129461_ch01_1P.indd 119335-129461_ch01_1P.indd 119 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
120 Chapter 3

•	 ARM memory addressing modes and address expressions

•	 Stack operations, return addresses, and preserving register data

This chapter will teach to you make efficient use of your computer’s
memory resources.

	 3.1	 Runtime Memory Organization
A running program uses memory in many ways, depending on the data’s
type. Here are some common data classifications you’ll find in an assembly
language program:

Code ​  Memory values that encode machine instructions (also known
as the text section under Linux and macOS).

Uninitialized static data ​  An area in memory set aside by the program
for uninitialized variables that exist the whole time the program runs;
the OS will initialize this storage area to 0s when it loads the program
into memory.

Initialized static data ​  A section of memory that also exists the whole
time the program runs. However, the OS loads values for all the vari-
ables appearing in this section from the program’s executable file, so
they have an initial value when the program first begins execution.

Read-only data ​  Similar to initialized static data, insofar as the OS
loads initial data for this section of memory from the executable file.
However, this section is marked read-only to prevent inadvertent modi-
fication of the data. Programs typically store constants and other
unchanging data in this section (the code section is also marked read-
only by the OS).

Heap ​  This special section of memory is designated to hold dynami-
cally allocated storage. Functions such as C’s malloc() and free() are
responsible for allocating and deallocating storage in the heap area.
“Pointer Variables and Dynamic Memory Allocation” on page XX dis-
cusses dynamic storage allocation in greater detail.

Stack ​  In this special section in memory, the program maintains local
variables for procedures and functions, program state information, and
other transient data. See “The Push and Pop Operations” on page XX
for more information about the stack section.

These are the typical sections you will find in common programs,
assembly language or otherwise. Smaller programs won’t use all these sec-
tions, though most programs have at least code, stack, and data sections.
Complex programs may create additional sections in memory for their
own purposes. Some programs may combine several of these sections. For
example, many programs will combine the code and read-only sections into
the same section in memory (as the data in both sections gets marked as
read-only). Some programs combine the uninitialized and initialized data

335-129461_ch01_1P.indd 120335-129461_ch01_1P.indd 120 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 121

sections, initializing the uninitialized variables to 0. Combining sections is
generally handled by the linker program. See “For More Information” on
page XX concerning the GNU linker.

Linux and macOS tend to put different types of data into different sec-
tions (or segments) of memory. Although it is possible to reconfigure mem-
ory to your choice by running the linker and specifying various parameters,
one typical organization might be similar to that in Figure 3-1.

High addresses

Adrs=0x0 =

Stack

Heap

Code (.text section/program instructions)

Read-only data (.rodata section)

Static (.data) variables

Uninitialized storage (.bss section) variables

Reserved by OS (typically 128kB)

Figure 3-1: A Linux/macOS example runtime memory organization

This figure is just an example. Real programs will likely organize mem-
ory differently, especially when using address space layout randomization
(ASLR), discussed later in this chapter.

The OS reserves the lowest memory addresses. Generally, your applica-
tion cannot access data (or execute instructions) at these low addresses.
One reason the OS reserves this space is to help trap NULL pointer refer-
ences: if you attempt to access memory location 0x0 (NULL), the OS will
generate a segmentation fault (also known as a general protection fault), mean-
ing you’ve accessed a memory location that doesn’t contain valid data.

The remaining six areas in the memory map hold different types of
data associated with your program. These sections of memory include the
stack section, the heap section, the .text (code) section, the .data section,
the .rodata (read-only data) section, and the .bss (storage) section. Each of
these memory sections corresponds to a type of data you can create in your
Gas programs. I will describe the .text, .data, .rodata, and .bss sections in
detail next. (The OS provides the stack and heap sections; you don’t nor-
mally declare these two in an assembly language program, so there isn’t
anything more to discuss about them here.)

3.1.1  The .text Section
The .text section contains the machine instructions that appear in a
Gas program. Gas translates each machine instruction you write into a

335-129461_ch01_1P.indd 121335-129461_ch01_1P.indd 121 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
122 Chapter 3

sequence of one or more word values. The CPU interprets these 32-bit word
values as machine instructions during program execution.

By default, when GCC/Gas/ld links your program, it tells the system
that your program can execute instructions and read data from the code
segment, but cannot write data to the code segment. The OS will generate a
segmentation fault if you attempt to store any data into the code segment.

3.1.2  The .data Section
You’ll typically put your variables in the .data section. In addition to declar-
ing static variables, you can embed lists of data into the .data declaration
section. You use the same technique to embed data into your .data section
that you use to embed data into the .text section: use the .byte, .hword,
.word, .dword, and so on, directives. Consider the following example:

 .data
bb: .byte 0
 .byte 1,2,3

u: .word 1
 .dword 5,2,10

c: .byte 0
 .byte 'a', 'b', 'c', 'd', 'e', 'f'

bn: .byte 0
 .byte true // Assumes true is defined as 1.

Values that Gas places in the .data memory segment by using these
directives are written to the segment after the preceding variables. For
example, the byte values 1,2,3 are emitted to the .data section after bb’s
0 byte. Because there aren’t any labels associated with these values, you do
not have symbolic access to these values in your program. You can use the
indexed addressing modes (described later in this chapter) to access these
extra values.

3.1.3  Read-Only Data Sections
Gas does not provide a stand-alone directive for creating sections that hold
read-only constants. However, you can easily use the Gas .section directive
to create a generic read-only constant section as follows:

.section .rodata, ""

Most programs use the .rodata identifier, by convention, for read-only
data. For example, GCC uses this name for read-only constant sections. You
could use any identifier you choose here. For example, I often use the name ​
.const for constant sections. However, as GCC uses .rodata, I’ll stick to that
convention in this book. I’ll say more about the .section directive a little
later; for the time being, note that as long as the second argument is the
empty string, Gas will create a read-only data section by using this directive.

335-129461_ch01_1P.indd 122335-129461_ch01_1P.indd 122 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 123

The .section .rodata section holds constants, tables, and other data that
your program cannot change during execution. This section is similar to
the .data section, with two differences:

•	 The .rodata section is defined with .section .rodata, "" rather than
.data.

•	 The system does not allow you to write data to variables in an .rodata
object while the program is running.

Here’s an example:

 .section .rodata, ""
pi: .single 3.141592653589793 // (rounded)
e: .single 2.718281828459045 // (rounded)
MaxU16: .hword 65535
MaxI16: .hword 32767

For many purposes, you can treat .rodata objects as literal constants.
However, because they are actually memory objects, they behave like read-
only .data objects. You cannot use an .rodata object anywhere a literal
constant is allowed. For example, you cannot use them as displacements
(constant offsets from a base pointer) in addressing modes (see “The ARM
Memory Addressing Modes” on page XX), in constant expressions, or as
immediate values. In practice, you can use them anywhere that reading a
.data variable is legal.

L INU X V S. M ACOS: FORCED CODE A L IGNMEN T

ARM machine instructions must be aligned on a word (32-bit) boundary. The
ARM cannot physically address an instruction that is not so aligned. Therefore,
if you insert data into the .text section that is not a multiple of 4 bytes long,
any instructions following that data will be misaligned. You must always include
an .align 2 (or .balign 4) directive before any code appearing after data that
is not a multiple of 4 bytes long in the .text section.

The macOS assembler is so paranoid about this that it requires all symbols
appearing in the .text section to be aligned on a 4-byte boundary, and it will
generate an error if it encounters a label declaration (label:, where label rep-
resents any identifier) that is not associated with a word-aligned address. The
only way to correct this error is to insert an .align 2 (or .balign 4) directive
before the label declaration. This can create a problem for certain data decla-
rations in the .text section. Consider the following code:

 .align 2
bb: .byte 0
c: .byte 0

(continued)

335-129461_ch01_1P.indd 123335-129461_ch01_1P.indd 123 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
124 Chapter 3

The macOS assembler will require both of these symbols to be word-
aligned (requiring an .align 2 directive between them), even if you don’t want
this. You might, for example, want c to immediately follow bb in memory. The
macOS assembler does not allow this. If you define a label, that label must be
aligned on a word boundary.

One solution is to avoid putting data in the .text section; just put your
read-only constants, such as .rodata, in their own section. However, there are
good reasons for wanting to put data in the .text section. In those situations,
you’ll have to work around this limitation when writing code for macOS.

As with the .data section, you may embed data values in the .rodata sec-
tion by using the .byte, .hword, .word, .dword, and so on, data declarations.
For example:

 .section .rodata, ""
roArray: .byte 0
 .byte 1, 2, 3, 4, 5
dwVal: .dword 1
 .dword 0

You can also declare constant values in the .text section. Data values
you declare in this section are also read-only objects, as Linux and macOS
write-protect the .text section. If you do place constant declarations in a
.text section, take care to place them in a location that the program will
not attempt to execute as code (such as after a b.al or ret instruction).
Unless you’re using data declarations to manually encode ARM machine
instructions (which would be rare and done only by expert programmers),
you don’t want your program to attempt to execute data as machine instruc-
tions; the result is usually undefined.

N O T E 	 Technically, the result of executing data in the .text section is well-defined: the
machine will decode whatever bit pattern you place in memory as a machine instruc-
tion. However, few people will be able to look at a piece of data and interpret its
meaning as a machine instruction.

3.1.4  The .bss Section
The .data section requires that you initialize objects, even if you simply
place a default value of 0 in the operand field. The .bss (block started by
symbol) section lets you declare variables that are always uninitialized when
the program begins running. This section begins with the .bss reserved
word and contains variable declarations whose initializers must always be 0.
Here is an example:

335-129461_ch01_1P.indd 124335-129461_ch01_1P.indd 124 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 125

 .bss
UninitUns32: .word 0
i: .word 0
character: .byte 0
bb: .byte 0

The OS will initialize all .bss objects to 0 when it loads your program
into memory. However, it’s probably not a good idea to depend on this
implicit initialization. If you need an object initialized with 0, declare it in a
.data section and explicitly set it to 0.

Annoyingly, Gas requires you to explicitly provide an initializer of 0
when declaring variables in the .bss section. Good assembly language pro-
grammers don’t like doing this, because providing their source code with an
explicit value tells the reader that they are expecting that variable to contain
that value when the program runs. If the program explicitly isn’t expecting
the variable to be initialized, it would be nice to tell the reader that.

A very old convention to make this statement is to use the expression .-.
in the operand field of such declarations. For example:

 .bss
UninitUns32: .word .-.
i: .word .-.
character: .byte .-.
bb: .byte .-.

Gas substitutes the current value of the location counter (see “Gas
Storage Allocation for Variables” on page XX) in place of the period (.).
The expression location_counter minus location_counter is equal to 0, which
satisfies the Gas requirements for initializers in the .bss section. This
strange syntax lets the reader know that you’re not explicitly expecting the
variable to be initialized with 0 when the program runs.

If .-. is too bizarre for your tastes (or you don’t want to have to type three
characters), I’ve often used something like this to get the same results:

 .equ _, 0 // "_" is a legitimate identifier
 .bss
UninitUns32: .word _
i: .word _
character: .byte _
bb: .byte _

This book tends to use the .-. form (when not explicitly specifying 0),
as there is historical precedence for it. This form has one drawback, how-
ever: it does not work for .qword declarations (this is a Gas limitation).

Variables you declare in the .bss section may consume less disk space
in the executable file for the program. This is because Gas writes out initial
values for .rodata and .data objects to the executable file, but it may use a

335-129461_ch01_1P.indd 125335-129461_ch01_1P.indd 125 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
126 Chapter 3

compact representation for uninitialized variables you declare in the .bss
section. Note, however, that this behavior is dependent on the OS version
and object-module format.

3.1.5  The .section Directive
The .section directive allows you to create sections using any name you
please (the .rodata section is an example). The syntax for this directive is

.section identifier, flags

where identifier is any legal Gas identifier (it does not have to begin with
a period) and flags is a string surrounded by quotes. The contents of the
string vary by OS, but both Linux and macOS seem to support the follow-
ing characters:

b   Section is a .bss section and will hold uninitialized data. All data
declarations must have a 0 initializer.

x   Section contains executable code.

w   Section contains writable data.

a   Section is allocatable (must be present for data sections).

d   Section is a data section.

The flags string may contain zero or more of these characters, though
certain flags (such as "b" and "x" or "d") are mutually exclusive. If the "w"
flag is not present in the string, the section will be read-only. Here are some
typical .section declarations:

.section aDataSection, "adw" // Typical data section

.section .const, "" // Like .rodata

.section .code, "x" // Code section (like .text)

Each unique section you define will be given its own block of memory
(such as the blocks that appear in Figure 3-1). The GNU linker/loader
will merge all sections with the same name when assigning them to blocks
of memory.

3.1.6  Declaration Sections
The .data, .rodata, .bss, .text, and other named sections may appear zero or
more times in your program. The declaration sections may appear in any
order, as the following example demonstrates:

 .data
i_static: .word 0

 .bss
i_uninit: .word .-.

335-129461_ch01_1P.indd 126335-129461_ch01_1P.indd 126 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 127

 .section .rodata, ""
i_readonly: .word 5

 .data
j: .word 0

 .section .rodata, ""
i2: .word 9

 .bss
c: .byte .-.

 .bss
d: .word .-.

 .text

Code goes here.

The sections may appear in an arbitrary order, and a given declaration
section may appear more than once in your program. As noted previously,
when multiple declaration sections of the same type (for example, the three
.bss sections in the preceding example) appear in a declaration section of
your program, Gas combines them into a single group, in any order it pleases.

3.1.7  Memory Access and MMU Pages
The ARM’s memory management unit (MMU) divides memory into blocks
known as pages. The OS is responsible for managing pages in memory, so
application programs don’t typically worry about page organization. However,
when working with pages in memory, make sure you’re aware of whether the
CPU even allows access to a given memory location and whether it is read/
write or read-only (write-protected).

Each program section appears in memory in contiguous MMU pages.
That is, the .rodata section begins at offset 0 in an MMU page and sequen-
tially consumes pages in memory for all the data appearing in that section.
The next section in memory (perhaps .data) begins at offset 0 in the next
MMU page following the last page of the previous section. If that previous
section (for example, .rodata) does not consume an integral multiple of
4,096 bytes, padding space will be present between the end of that section’s
data and the end of its last page, to guarantee that the next section begins
on an MMU page boundary.

Each new section starts in its own MMU page because the MMU con-
trols access to memory by using page granularity. For example, the MMU
controls whether a page in memory is readable/writable or read-only. For
.rodata sections, you want the memory to be read-only. For the .data section,
you want to allow reads and writes. Because the MMU can enforce these
attributes only on a page-by-page basis, you cannot have .data section infor-
mation in the same MMU page as an .rodata section.

335-129461_ch01_1P.indd 127335-129461_ch01_1P.indd 127 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
128 Chapter 3

Normally, all this is completely transparent to your code. Data you
declare in a .data (or .bss) section is readable and writable, and data in
an .rodata or .text section is read-only (.text sections are also executable).
Beyond placing data in a particular section, you don’t have to worry too
much about the page attributes.

You do need to worry about MMU page organization in memory in one
situation. Sometimes it is convenient to access (read) data beyond the end
of a data structure in memory. However, if that data structure is aligned
with the end of an MMU page, accessing the next page in memory could
be problematic. Some pages in memory are inaccessible; the MMU does not
allow reading, writing, or execution to occur on that page. Attempting to
do so will generate an ARM segmentation fault. This will typically crash your
program, unless you have an exception handler in place to handle segmen-
tation faults. If you have a data access that crosses a page boundary, and
the next page in memory is inaccessible, this will crash your program. For
example, consider a half-word access to a byte object at the very end of an
MMU page, as shown in Figure 3-2.

Offset 0×FFF
 in page xxxx

Offset 0×0000 in in
page xxxx + 1

Page boundary

Hword access crossing
page boundary

Figure 3-2: Half-word access at the end of a memory-management page

As a general rule, you should never read data beyond the end of a
data structure. If for some reason you need to do so, ensure that it is legal
to access the next page in memory. It goes without saying that you should
never write data beyond the end of a given data structure; this is always
incorrect and can create far more problems than just crashing your pro-
gram (including severe security issues).

3.1.8  PIE and ASLR
As noted in Chapter 1, macOS forces all code to use a position-independent
executables (PIE) form. Linux doesn’t absolutely require this, but it allows
you to write PIE code if you choose. There are two main reasons for PIE
code: shared libraries and security, which were covered in “Linux vs. macOS:
Position-Independent Executables” on page XX. However, as the behavior of
PIE code profoundly affects the way you write ARM assembly language, it is
worthwhile to spend a little more time discussing PIE, and especially address
space layout randomization (ASLR).

335-129461_ch01_1P.indd 128335-129461_ch01_1P.indd 128 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 129

ASLR is an attempt by the OS to thwart various exploits (hacks) that
try to figure out where the code and data reside in an application. Prior to
PIE and ASLR, most OSs always loaded the executable code and data to the
same address in memory, making it easy for a hacker to patch or otherwise
mess with the executable program. By loading the code and data sections
into random memory locations, PIE/ASLR make it much more difficult for
exploits to tap into the executing code.

As a result of ASLR, the layout of an executing program in memory will
not actually look like that in Figure 3-1. For one given instance of a program
execution, it might look something like Figure 3-3.

High addresses

Adrs=0x0 =

Stack

Heap

Code (.text section/program instructions)

Read-only data (.rodata section)

Static (.data) variables

Uninitialized storage (.bss section) variables

Reserved by OS (typically 128kB)

Random space

Random space

Random space

Random space

Random space

Figure 3-3: A possible memory layout for one execution of an application

However, on the next run of the program, the sections will likely be
rearranged and placed at different locations in memory.

While PIE/ASLR makes it difficult for hackers to exploit your code,
it also plays havoc with the ARM’s instruction set. Consider the following
(legitimate) ARM ldr instruction:

ldr w0, someWordVar // Assume someWordVar is in .data:q.
!

This would normally load the W0 register from the 32-bit variable
someWordVar found in the .data section. This particular instruction uses the
PC-relative addressing mode, which means that the instruction encodes an
offset from the address of the ldr instruction to the someWordVar variable in

335-129461_ch01_1P.indd 129335-129461_ch01_1P.indd 129 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
130 Chapter 3

memory. However, if you assemble this program under macOS, you get the
following error:

error: unknown AArch64 fixup kind!

Under Linux (Ubuntu and Raspberry Pi OS seem to be different; your
mileage may vary), you get something like

relocation truncated to fit: R_AARCH64_LD_PREL_LO19 against `.data'

This is a real ARM64 instruction and should work. In fact

ldr reg, =constant

is just a special form of this instruction, and it does work.
The problem is due to the ARM 32-bit instruction length. If you look

up the encoding for the ldr instruction in the ARM reference manual,
you’ll discover that it sets aside 19 bits for the address of the memory loca-
tion. This turns out to be an offset (a distance in bytes) from the address
of the ldr instruction (that is, the value of the 19-bit field is added to the
PC to get the actual memory address). Because it’s referencing data in the
.text section, and everything is word-aligned in the text section, the 19-bit
offset is actually a word offset, not a byte offset. This effectively gives the
ldr instruction another 2 bits (the LO 2 bits will always be 0). This effec-
tive 21-bit offset allows the ldr instruction to access data at a location ±1MB
around the ldr instruction.

Unfortunately, when accessing data in the .data section, which the OS
has been nice enough to place at a random address (probably farther than
1MB away), the 21-bit range of the ldr instruction won’t be sufficient. This
is why Gas complains about attempting to access a variable in the .data sec-
tion with the ldr instruction. As a bottom line, you can’t use that instruction
to directly access data unless that data is also in the .text section and isn’t
more than ±1MB away.

3.1.9  The .pool Section
The .pool section is a Gas pseudo-section in your program. As noted previ-
ously, the following instruction loads a large constant into a register by plac-
ing that constant somewhere in memory, then loading the contents of that
memory location into the destination register:

ldr reg, =largeConstant

In other words, this instruction is completely equivalent to either of the
following:

 ldr x0, a64_bit_constant
 ldr w0, a32_bit_constant
 .

335-129461_ch01_1P.indd 130335-129461_ch01_1P.indd 130 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 131

 .
 .
// Somewhere in the .text section that will never
// be executed as code:

a64_bit_constant: .dword The_Actual_64bit_Constant_Value
a32_bit_constant: .word The_Actual_32bit_Constant_Value

Gas automatically figures out an appropriate place to put such con-
stants: near the instructions that reference them but out of the code path.

If you’d like to control the placement of these constants in your .text
section, you can use the .pool directive. Wherever you place this directive
in your .text section (and it must be in the .text section), Gas will emit the
constants it produces. Just make sure that if you put a .pool directive in
your code, you place it after an unconditional branch or return instruction
so that the program flow won’t attempt to execute that data as machine
instructions.

Normally, you don’t need to place a .pool directive in your source code,
since Gas will do a reasonable job of finding a location to place its data.
However, if you intend to also insert data of your own in the .text section,
you may want to insert the .pool directive and place your data declarations
immediately afterward. Note that the data after .pool is part of the .text sec-
tion, so you can continue to place machine instructions after the .text.

	 3.2	 Gas Storage Allocation for Variables
Gas associates a current location counter with each of the declaration sections
(.text, .data, .rodata, .bss, and any other named sections). These location
counters initially contain 0. Whenever you declare a variable in one of these
sections (or write code in a code section), Gas associates the current value
of that section’s location counter with the label and bumps up the value of
that location counter by the size of the object you’re declaring.

For example, assume that the following is the only .data declaration sec-
tion in a program:

 .data
bb: .byte 0 // Location counter = 0, size = 1
s: .hword 0 // Location counter = 1, size = 2
w: .word 0 // Location counter = 3, size = 4
d: .dword 0 // Location counter = 7, size = 8
q: .qword 0 // Location counter = 15, size = 16
 // Location counter is now 31.

As you can see, variable declarations listed in a single .data section have
contiguous offsets (location counter values) into the .data section. Given
the preceding declaration, s will immediately follow bb in memory, w will
immediately follow s in memory, d will immediately follow w, and so on.
These offsets aren’t the actual runtime addresses of the variables. At run-
time, the system loads each section to a base address in memory. The linker

335-129461_ch01_1P.indd 131335-129461_ch01_1P.indd 131 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
132 Chapter 3

and the OS add the base address of the memory section to each of these
location counter values (which we call displacements, or offsets) to produce
the actual memory address of the variables.

OBTA INING T HE CUR R EN T LOCAT ION COUN T ER VA LUE

If you ever want to use the current location counter value in your program, Gas
will substitute it for a single period (.) wherever a constant is allowed, as in the
following example:

.dword . // Stores the address of this dword in memory

You’d normally use the . operator to compute lengths of sections of code, using
something like the following:

lbl: .byte 0, 1, 2, 3, 4
lbl2: .hword 55
size: .word . - lbl

The . - lbl expression computes the number of bytes between the lbl
symbol and the size label. The . operator returns the location counter value at
the beginning of the .word directive and does not include the 4 bytes that .word
will emit to the output file.

Keep in mind that you may link other modules with your program (for
example, from the C stdlib) or even additional .data sections in the same
source file, and the linker has to merge the .data sections. Each individual
section (even when it has the same name as another section) has its own
location counter that starts from 0 when allocating storage for the variables
in the section. Hence, the offset of an individual variable may have little
bearing on its final memory address.

Gas allocates memory objects you declare in .rodata, .data, and .bss
sections in completely different regions of memory. Therefore, you cannot
assume that the following three memory objects appear in adjacent mem-
ory locations (indeed, they probably will not):

 .data
bb: .byte 0

 .section .rodata, ""
w: .word 0x1234

 .bss
d: .dword .-.

In fact, Gas will not even guarantee that variables you declare in
separate .data (or other) sections are adjacent in memory, even if there is

335-129461_ch01_1P.indd 132335-129461_ch01_1P.indd 132 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 133

nothing between the declarations in your code. For example, you cannot
assume whether bb, w, and d are—or aren’t—in adjacent memory locations
in the following declarations:

 .data
bb: .byte 0

 .data
w: .word 0x1234

 .data
d: .dword 0

If your code requires these variables to consume adjacent memory loca-
tions, you must declare them in the same .data section.

	 3.3	 Little-Endian and Big-Endian Data Organization
As you learned in “The Memory Subsystem” on page XX, the ARM stores mul-
tibyte data types in memory, with the LO byte at the lowest address in memory
and the HO byte at the highest address (see Figure 1-6). This type of data
organization in memory is known as little endian. Little-endian data organiza-
tion, in which the LO byte comes first and the HO byte comes last, is common
in many modern CPUs. It is not, however, the only possible approach.

Big-endian data organization reverses the order of the bytes in memory.
The HO byte of the data structure appears first, in the lowest memory
address, and the LO byte appears in the highest memory address. Table 3-1
describes the memory organization for half words.

Table 3-1: Half-Word Object Little- and Big-Endian Data Organization

Data byte
Memory organization
for little endian

Memory organization
for big endian

0 (LO byte) base + 0 base + 1

1 (HO byte) base + 1 base + 0

Table 3-2 describes the memory organization for words.

Table 3-2: Word Object Little- and Big-Endian Data Organization

Data byte
Memory organization
for little endian

Memory organization
for big endian

0 (LO byte) base + 0 base + 3

1 base + 1 base + 2

2 base + 2 base + 1

3 (HO byte) base + 3 base + 0

335-129461_ch01_1P.indd 133335-129461_ch01_1P.indd 133 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
134 Chapter 3

Table 3-3 describe the memory organization for double words.

Table 3-3: Dword Object Little- and Big-Endian Data Organization

Data byte
Memory organization
for little endian

Memory organization
for big endian

0 (LO byte) base + 0 base + 7

1 base + 1 base + 6

2 base + 2 base + 5

3 base + 3 base + 4

4 base + 4 base + 3

5 base + 5 base + 2

6 base + 6 base + 1

7 (HO byte) base + 7 base + 0

Normally, you wouldn’t be too concerned with big-endian memory
organization on an ARM CPU. However, on occasion, you may need to
deal with data produced by a different CPU (or by a protocol, such as
Transmission Control Protocol/Internet Protocol, or TCP/IP) that uses
big-endian organization as its canonical integer format. If you were to
load a big-endian value in memory into a CPU register, the value would
be incorrect.

If you have a 16-bit big-endian value in memory and you load it into
a register, its bytes will be swapped. For 16-bit values, you can correct this
issue by using the rev16 instruction, which has the following syntax:

rev16 regdest, regsrc

Here, regdest and regsrc are any 32- or 64-bit general-purpose registers (both
must be the same size). This instruction will swap the 2 bytes in each of the
16-bit half-words in the source register; that is, this operates on hword0 and
hword1 in a 32-bit register and on hword0, hword1, hword2, and hword3 in a 64-bit
register. For example

ldr w1, =0x12345678
rev16 w1, w1

will produce 0x34127856 in the W1 register, having swapped bytes 0 and 1
as well as bytes 2 and 3.

If you have a 32-bit value in a register (32- or 64-bit), you can swap the
4 bytes in that register by using the rev32 instruction:

rev32 regdest, regsrc

Again, the registers can be 32- or 64-bit, but both must be the same
size. In a 32-bit register, this will swap bytes 0 and 3 as well as 1 and 2. In a

335-129461_ch01_1P.indd 134335-129461_ch01_1P.indd 134 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 135

64-bit register, it will swap bytes 0 and 3, 1 and 2, 7 and 4, and 6 and 5 (see
Figure 3-4).

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Figure 3-4: Operation of the rev32 instruction

The rev instruction will swap bytes 7 and 0, 6 and 1, 5 and 2, and 4 and 3
in a 64-bit register (see Figure 3-5).

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Figure 3-5: Operation of the rev instruction

The rev instruction accepts only 64-bit registers.

	 3.4	 Memory Access
“The Memory Subsystem” on page XX describes how the ARM CPU fetches
data from memory on the data bus. In an idealized CPU, the data bus is
the size of the standard integer registers on the CPU; therefore, you would
expect the ARM CPUs to have a 64-bit data bus. In practice, modern CPUs
often make the physical data bus connection to main memory much larger
in order to improve system performance. The bus brings in large chunks of
data from memory in a single operation and places that data in the CPU’s
cache, which acts as a buffer between the CPU and physical memory.

From the CPU’s point of view, the cache is memory. Therefore, when
the remainder of this section discusses memory, it’s generally talking about
data sitting in the cache. As the system transparently maps memory accesses
into the cache, we can discuss memory as though the cache were not present
and discuss the advantages of the cache as necessary.

On early processors predating the ARM, memory was arranged as an
array of bytes (8-bit machines, such as the Intel 8088), half words (16-bit
machines, such as the Intel 8086 and 80286), or words (32-bit machines, such
as the 32-bit ARM CPUs). On a 16-bit machine, the LO bit of the address did
not physically appear on the address bus. This means the addresses 126 and
127 put the same bit pattern on the address bus (126, with an implicit 0 in bit
position 0), as shown in Figure 3-6.

335-129461_ch01_1P.indd 135335-129461_ch01_1P.indd 135 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
136 Chapter 3

16-bit
CPU

Memory

Address = 126

Data = Memory[126]
LO 8 bits
HO 8 bits

120
121
122
123
124
125
126
127
128
129

Figure 3-6: The address and data bus for 16-bit
processors

When reading a byte, the CPU uses the LO bit of the address to select
the LO byte or HO byte on the data bus. Figure 3-7 shows the process when
accessing a byte at an even address (126 in this figure).

16-bit
CPU

Memory

Address bus = 126

Byte data = Memory[126]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

Figure 3-7: Reading a byte from an even address on a 16-bit CPU

Figure 3-8 shows memory access for the byte at an odd address (127 in
this figure). Note that in both Figures 3-7 and 3-8, the address appearing
on the address bus is 126.

335-129461_ch01_1P.indd 136335-129461_ch01_1P.indd 136 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 137

120
121
122
123
124
125
126
127
128
129

LO 8 bits

Memory

Address bus = 126

Byte data = Memory[127]

16-bit

CPU

HO 8 bits

Figure 3-8: Reading a byte from an odd address on a 16-bit CPU

What happens when this 16-bit CPU wants to access 16 bits of data at
an odd address? For example, suppose that in these figures, the CPU reads
the word at address 125. When the CPU puts address 125 on the address
bus, the LO bit doesn’t physically appear. Therefore, the actual address on
the bus is 124. If the CPU were to read the LO 8 bits off the data bus at this
point, it would get the data at address 124, not address 125.

Fortunately, the CPU is smart enough to figure out what’s going on
here: it extracts the data from the HO 8 bits on the data bus and uses this
as the LO 8 bits of the data operand. However, the HO 8 bits that the CPU
needs are not found on the data bus. The CPU has to initiate a second
read operation, placing address 126 on the address bus, to get the HO
8 bits (these will be sitting in the LO 8 bits of the data bus, but the CPU
can figure that out). It takes two memory cycles for this read operation to
complete. Therefore, the instruction reading the data from memory will
take longer to execute than it would have if the data had been read from
an address that was an integral multiple of 2 (16-bit alignment).

The same problem exists on 32-bit processors, except that the 32-bit
data bus allows the CPU to read 4 bytes at a time. Reading a 32-bit value
at an address that is not an integral multiple of 4 incurs the same perfor-
mance penalty. However, accessing a 16-bit operand at an odd address
doesn’t always guarantee an extra memory cycle—only addresses that,
when divided by 4, have a remainder of 3 incur the penalty. In particular,
if you access a 16-bit value (on a 32-bit bus) at an address where the LO
2 bits contain 0b01, the CPU can read the word in a single memory cycle,
as shown in Figure 3-9.

335-129461_ch01_1P.indd 137335-129461_ch01_1P.indd 137 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
138 Chapter 3

32-bit
CPU

Memory

Address bus = 124

32-bit data bus
Word data = Memory[125]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

Figure 3-9: Accessing a word on a 32-bit data bus

Modern ARM CPUs with cache systems have largely eliminated this
problem. As long as the data (1, 2, 4, or 8 bytes in size) is fully within a
cache line—a processor-defined number of bytes—no memory cycle penalty
occurs for an unaligned access. If the access does cross a cache-line bound-
ary, the CPU will run a little slower while it executes two memory opera-
tions to get (or store) the data.

	 3.5	 Gas Support for Data Alignment
To write fast programs, you must ensure that you properly align data
objects in memory. Proper alignment means that the starting address for
an object is a multiple of a certain size—usually the size of an object, if the
object’s size is a power of 2 for values up to 32 bytes in length. For objects
greater than 32 bytes, aligning the object on an 8-, 16-, or 32-byte address
boundary is probably sufficient. For objects fewer than 16 bytes, aligning
the object at an address that is the next power of 2 greater than the object’s
size is usually fine.

As noted in the previous section, accessing data that is not aligned at
an appropriate address may require extra time. Therefore, if you want to
ensure that your program runs as rapidly as possible, you should try to
align data objects according to their size.

Data becomes misaligned whenever you allocate storage for different-
sized objects in adjacent memory locations. For example, if you declare a
byte variable, it will consume 1 byte of storage, and the next variable you
declare in that declaration section will have the address of that byte object
plus 1. If the byte variable’s address happens to be an even address, the
variable following that byte will start at an odd address. If that following
variable is a half-word, word, or dword object, its starting address will not
be optimal.

In this section, we’ll explore ways to ensure that a variable is aligned
at an appropriate starting address based on its size. Consider the following
Gas variable declarations:

335-129461_ch01_1P.indd 138335-129461_ch01_1P.indd 138 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 139

 .data
w: .word 0
bb: .byte 0
s: .hword 0
w2: .word 0
s2: .hword 0
b2: .byte 0
dw: .dword 0

The first .data declaration in a program places its variables at an
address that is an even multiple of 4,096 bytes. Whatever variable first
appears in that .data declaration is guaranteed to be aligned on a reason-
able address. Each successive variable is allocated at an address that is the
sum of the sizes of all the preceding variables, plus the starting address of
that .data section.

Therefore, assuming Gas allocates the variables in the previous example
at a starting address of 4096, it will allocate them at the following addresses:

 // Start Adrs Length
w: .word 0 // 4096 4
bb: .byte 0 // 4100 1
s: .hword 0 // 4101 2
w2: .word 0 // 4103 4
s2: .hword 0 // 4107 2
b2: .byte 0 // 4109 1
dw: .dword 0 // 4110 8

With the exception of the first variable (which is aligned on a 4KB
boundary) and the byte variables (whose alignment doesn’t matter), all
these variables are misaligned. The s, s2, and w2 variables start at odd
addresses, and the dw variable is aligned on an even address that is not a
multiple of 8 (word-aligned but not dword-aligned).

An easy way to guarantee that your variables are aligned properly is to
put all the dword variables first, the word variables second, the half-word
variables third, and the byte variables last in the declaration, as shown here:

 .data
dw: .dword 0
w: .word 0
w2: .word 0
s: .hword 0
s2: .hword 0
bb: .byte 0
b2: .byte 0

This organization produces the following addresses in memory:

 // Start Adrs Length
dw: .dword 0 // 4096 8
w2: .word 0 // 4104 4

335-129461_ch01_1P.indd 139335-129461_ch01_1P.indd 139 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
140 Chapter 3

w3: .word 0 // 4108 4
s: .hword 0 // 4112 2
s2: .hword 0 // 4114 2
bb: .byte 0 // 4116 1
b2: .byte 0 // 4117 1

As you can see, these variables are all aligned at reasonable addresses.
Unfortunately, it is rarely possible for you to arrange your variables in

this manner. While many technical reasons make this alignment impossi-
ble, a good practical reason for not doing this is that it doesn’t let you orga-
nize your variable declarations by logical function (that is, you probably
want to keep related variables next to one another, regardless of their size).

To resolve this problem, Gas provides the .align and .balign directives.
As noted in “The Anatomy of an Assembly Language Program” on page XX,
the .align argument is a value that will be raised to that power of 2, and the
.balign’s operand is an integer that must be a power of 2 (1, 2, 4, 8, 16, and
so on). These directives ensure that the next memory object will be aligned
to the specified size.

By default, these directives will pad the data bytes they skip with 0s; in a
.text section, Gas aligns the code by using nop (no-operation) instructions.
If you would like to use a different padding value, these two directives allow
a second operand:

.align pwr2Alignment, padValue

.balign alignment, padValue

Here, padValue must be an 8-bit constant, which these directives will use
as the padding value. Gas also allows a third argument, which is the maxi-
mum allowable padding; see the Gas documentation for more details.

The previous example could be rewritten, using the .align directive,
as follows:

 .data
 .align 2 // Align on 4-byte boundary.
w: .word 0
bb: .byte 0
 .align 1 // Align on 2-byte boundary.
s: .hword 0
 .align 2 // Align on 4-byte boundary.
w2: .word 0
s2: .hword 0
b2: .byte 0
 .align 3 // Align on 8-byte boundary.
dw: .dword 0

If Gas determines that an .align directive’s current address (location
counter value) is not an integral multiple of the specified value, Gas will
quietly emit extra bytes of padding after the previous variable declaration
until the current address in the .data section is a multiple of the specified
value. This makes your data larger by a few bytes, in exchange for faster

335-129461_ch01_1P.indd 140335-129461_ch01_1P.indd 140 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 141

access to it. Since your data will grow only slightly larger when you use this
feature, this is probably a good trade-off.

As a general rule, if you want the fastest possible access, choose an
alignment value equal to the size of the object you want to align. That is,
align half words to even boundaries with an .align 1 statement, words to
4-byte boundaries with .align 2, double words to 8-byte boundaries with
.align 3, and so on. If the object’s size is not a power of 2, align it to the
next higher power of 2.

Data alignment isn’t always necessary, since the cache architecture
of modern ARM CPUs handles most misaligned data. Use the alignment
directives only with variables for which speedy access is absolutely critical.

	 3.6	 The ARM Memory Addressing Modes
For the most part, the ARM uses a very standard RISC load/store architecture.
This means that it accomplishes almost all memory access by using instruc-
tions that load registers from memory or store the value held in registers to
memory. The load and store instructions access memory by using memory
addressing modes, mechanisms the CPU uses to determine the address of a
memory location. The ARM memory addressing modes provide flexible
access to memory, allowing you to easily access variables, arrays, structs,
pointers, and other complex data types. Mastering ARM addressing modes
is an important step toward mastering ARM assembly language.

In addition to loads and stores, ARM uses atomic instructions. For the
most part, these are variations of the load and store instructions, with a few
extra bells and whistles needed for multiprocessing applications. Atomic
instructions are beyond the scope of this text; for more information, see the
ARM V8 reference manual.

Until now, this book has presented only two mechanisms for access-
ing memory: the register-indirect addressing mode (for example, [X0])
introduced in Chapter 1, and the PC-relative addressing mode discussed in
“PIE and ASLR” on page XX. However, the ARM provides more than half
a dozen modes (depending on how you count them) for accessing data in
memory. The following sections describe each of these modes.

3.6.1  PC-Relative
The PC-relative addressing mode is useful only for fetching values from the
.text section, as the other sections will likely fall out of the ±1MB range of
this addressing mode. Therefore, it is much easier to directly access con-
stant data in the .text section than it would be in the .rodata section (or
another read-only section).

A couple of issues arise when using the PC-relative addressing mode in
the .text section. First, because the 19-bit offset buried in the 32-bit instruc-
tion encoding is shifted left 2 bits to produce a word offset (as discussed
earlier), you can load only word and double-word values when using this
addressing mode—no bytes or half words. For example, you can access byte

335-129461_ch01_1P.indd 141335-129461_ch01_1P.indd 141 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
142 Chapter 3

and half-word values in the .text section with the register-indirect address-
ing mode, but not with the PC-relative addressing mode.

When accessing data in the .text section by using the PC-relative
addressing mode, keep the following points in mind:

•	 Under macOS, all labels in the .text section must be aligned on a
4-byte boundary, even if the data associated with that label doesn’t
require such alignment (such as bytes and half words).

•	 Data values in the .text section cannot refer to other sections (for
example, pointer constants, discussed in Chapter 4). However, such
objects can refer to data within the .text section itself (this is important
for jump tables, covered in Chapter 7).

•	 The data must reside within ±1MB of the instruction(s) that reference
it. For example, you cannot create an array of data that exceeds 1MB.

•	 Only word and dword accesses are allowed when using the PC-relative
addressing mode.

•	 As the data resides in the .text section, it is read-only; you cannot put
variables in the .text section.

To use the PC-relative addressing mode, just reference the label you
used to declare the object in the .text section:

 ldr w0, wordVar
 .
 .
 .
wordVar: .word 12345

Don’t forget that all data declarations you put in the .text section need
to be out of the execution path, preferably in the .pool section. (You’ll see
an exception to this rule in Chapter 5 when I discuss passing parameters in
the code stream.)

3.6.2  Register-Indirect
Up to this point, most examples in this book have used the register-indirect
addressing mode. Indirect means that the operand is not the actual address,
but that the operand’s value specifies the memory address to use. In a register-
indirect addressing mode, the value held in the register is the address of
the memory location to access. For example, the instruction

ldr x0, [x1]

tells the CPU to load X0’s value from the location whose address is cur-
rently in X1. The square brackets around X1 tell Gas to use the register-
indirect addressing mode.

The ARM has 32 forms of this addressing mode, one for each of the 32
general-purpose 64-bit registers (though X31 is not legal; use SP instead).

335-129461_ch01_1P.indd 142335-129461_ch01_1P.indd 142 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 143

You cannot specify a 32-bit register in the square brackets when using an
indirect addressing mode.

Technically, you could load a 64-bit register with an arbitrary numeric
value and access that location indirectly by using the register-indirect
addressing mode:

ldr x1, =12345678
ldr x0, [x1] // Attempts to access location 12345678

Unfortunately (or fortunately, depending on how you look at it), this
will probably cause the OS to generate a segmentation fault because it’s not
always legal to access arbitrary memory locations. There are better ways to
load the address of an object into a register, as you’ll see shortly.

You can use the register-indirect addressing modes to access data ref-
erenced by a pointer, to step through array data, and, in general, whenever
you need to modify an object’s address while your program is running.

When using a register-indirect addressing mode, you refer to the value
of a variable by its numeric memory address (the value you load into a regis-
ter) rather than by the name of the variable. This is an example of using an
anonymous variable.

The aoaa​.inc include file provides the lea macro, which you can use to
take the address of a variable and put it into a 64-bit register:

lea x1, j

After executing this lea instruction, you can use the [x1] register-
indirect addressing mode to indirectly access the value of j (which is how
almost every example up to this point has accessed memory). In “Getting
the Address of a Memory Object” on page XX, you’ll see how the lea
macro works.

3.6.3  Indirect-Plus-Offset
Consider the following data declaration, similar to other examples given in
this book:

bVar: .byte 0, 1, 2, 3

If you load X1 with the address of bVar, you can access that byte (0) by using
an instruction such as this:

ldrb w1, [x1] // Load byte at bVar (0) into w1.

To access the other 3 bytes following that 0 in memory, you can use the
indirect-plus-offset addressing mode. Here is the mode’s syntax:

[Xn|SP, #signed_expression]

335-129461_ch01_1P.indd 143335-129461_ch01_1P.indd 143 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
144 Chapter 3

Xn|SP means X0 to X30 or SP, and signed_expression is a small integer expres-
sion in the range –256 to +255. This particular addressing mode will
compute the sum of the address in Xn (n = 0 to 30, or SP) with the signed
constant and use that as the effective memory address (the memory address
to access).

For example, if X1 contains the address of bVar from the previous exam-
ple, the following instruction will fetch the byte just beyond bVar (that is, the
byte containing 1 in that example):

ldrb w0, [x1, #1] // Fetch byte at address X1 + 1.

Once again, the 32-bit instruction size severely limits the range of this
addressing mode (only 9 bits are available for the signed offset). If you
need a greater offset, you must explicitly add a value to the address in X1
(perhaps using a different register if you need to maintain the base address
in X1). For example, the following code does this using X2 to hold the
effective address:

add x2, x1, #2000 // Access location X1 + 2000.
ldrb w2, [x2]

This computes X2 = X1 + 2000 and loads W2 with the word at that address.

3.6.4  Scaled Indirect-Plus-Offset
The scaled indirect-plus-offset addressing mode is a somewhat more complex
variant of the indirect-plus-offset mode. It incorporates a 12-bit unsigned
constant into the instruction encoding that is scaled (multiplied) by 1, 2,
4, or 8, depending on the size of the data transfer. This provides a range
extension to the 9-bit signed offset of the indirect-plus-offset mode.

This addressing mode uses the same syntax as the indirect-plus-offset
addressing mode, except that it doesn’t allow signed offsets:

[Xn|SP, #unsigned_expression]

For byte transfers (ldrb), the unsigned expression can be a value in
the range 0 to 0xFFF (4,095). For half-word transfers (ldrh), the unsigned
expression can be a value in the range 0 to 0x1FFE, but the offset must
be even. For word transfers (ldr), the unsigned expression must be in the
range 0 to 0x3FFC and must also be divisible by 4. For dword transfers, the
unsigned expression must be in the range 0 to 0x7FF8 and must be divis-
ible by 8. As you’ll see in Chapter 4, these numbers work great for accessing
elements of a byte, half-word, word, or double-word array.

Generally, the assembler will automatically select between the indirect-
plus-offset and scaled indirect-plus-offset addressing modes, based on the
value of the offset appearing in the addressing mode. Sometimes the choice
might be ambiguous. For example:

ldr w0, [X2, #16]

335-129461_ch01_1P.indd 144335-129461_ch01_1P.indd 144 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 145

Here, the assembler could choose the scaled or unscaled versions of the
addressing mode. Typically, it would choose the scaled form. Its decision
shouldn’t matter to your code; either form will load the appropriate word in
memory into the W0 register.

If, for some reason, you wish to explicitly specify the unscaled address-
ing mode, you can do so using the ldur and stur instructions (load or store
register unscaled).

3.6.5  Pre-indexed
The pre-indexed addressing mode is very similar to the indirect-plus-offset
addressing mode, insofar as it combines a 64-bit register and a signed 9-bit
offset. However, this addressing mode copies the sum of the register and
offset into the register before accessing memory. In the end, it accesses the
same address as the indirect-plus-offset mode, but once the instruction fin-
ishes, the index register points into memory at the indexed location. This
mode is useful for stepping through arrays and other data structures by
incrementing the register after each access in a loop.

Here’s the syntax for the pre-indexed addressing mode:

[Xn|SP, #signed_expression]! // Xn|SP has the usual meaning.

The ! at the end of this sequence differentiates the pre-indexed address-
ing mode. As with the indirect-plus-offset mode, the signed_expression value
is limited—in this case, to 9 bits (–256 to +255).

The following code fragment uses this addressing mode:

bVar: .byte 0, 1, 2, 3
 .
 .
 .
 lea x0, bVar-1 // Initialize with adrs of bVar – 1.
 Mov x1, 4
loop: ldrb w2, [x0, #1]!

 Do something with the byte in w2.

 Subs x1, x1, #1
 bne loop

On the first iteration of this loop, the addressing mode adds 1 to X0 so
that it points at the first byte in the bVar array of 4 bytes. This also leaves X0
pointing at that first byte. On each successful iteration of the loop, X0 is
incremented by 1, accessing the next byte in the bVar array.

The subs instruction will set the Z flag when it decrements X1 down to 0.
When that happens, the bne (branch if Z = 0) instruction will fall through,
terminating the loop.

335-129461_ch01_1P.indd 145335-129461_ch01_1P.indd 145 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
146 Chapter 3

3.6.6  Post-Indexed
The post-indexed addressing mode is very similar to the pre-indexed
addressing mode, except it uses the value of the register as the memory
address before updating the register with the signed immediate value. Here’s
the syntax for the post-indexed addressing mode:

[Xn|SP], #signed_expression // Xn|SP has the usual meaning.

Again, the signed_expression is limited to 9 bits (–256 to +255).
The example of the previous section can be rewritten and slightly

improved by using the post-indexed addressing mode:

bVar: .byte 0, 1, 2, 3
 .
 .
 .
 lea x0, bVar
 mov x1, 4
loop: ldrb w2, [x0], #1

 Do something with the byte in w2.

 Subs x1, x1, #1
 bne loop

This example starts with X0 pointing at bVar and ends with X0 pointing
at the first byte beyond the (four-element) bVar array. On the first iteration
of this loop, the ldr instruction first uses the value in X0, pointing at bVar,
then increments X0 after fetching the byte where X0 points.

3.6.7  Scaled-Indexed
The scaled-indexed addressing mode contains two register components
(rather than a register and an immediate constant) that form the effective
address. The syntax for this mode is the following:

[Xn|SP, Xi]
[Xn|SP, Wi, extend]
[Xn|SP, Xi, extend]

The first form is the easiest to understand: it computes the effective
address (EA) by adding the values in Xn (or SP) and Xi. Generally, Xn (or
SP) is known as the base address, and the value in Xi is the index (which
must be X0 to X30 or XZR). The base address is the lowest memory address
of an object, and the index is an offset from that base address (much like
the immediate constants in the indirect-plus-offset addressing mode). This
is just a simple base + index addressing mode: no scaling takes place.

335-129461_ch01_1P.indd 146335-129461_ch01_1P.indd 146 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 147

W H Y X N|SP, NOT X 31?

As noted in “The ARM64 CPU Architecture” on page XX, the stack pointer reg-
ister, SP, is the same as X31. However, if you try to use X31 as the base register
in an addressing mode, Gas will report an error. This is because the ARM64
CPU actually maps two separate registers to X31: SP and XZR (the zero regis-
ter). You use one of those register names rather than X31.

In addressing modes, the ARM does not allow you to use XZR as a base
register. You can, however, use SP as the base register. Conversely, XZR is
allowed as an index register (though it’s somewhat redundant to do so), and SP
is not allowed there.

The base + index form is useful in these situations:

•	 You have a pointer to an array object in a register (Xn, the base
address), and you want to access an element of that array by using an
integer index (typically in a memory variable). In this case, you would
load the index into the index register (Xi) and use the base + index
mode to access the actual element.

•	 You want to use the indirect-plus-offset addressing mode, but the offset
is outside the range –256 to +255. In this case, you can load the larger
offset into Xi and use the base + index addressing mode to access the
memory location regardless of the offset.

The second and third forms of the scaled-indexed addressing mode
provide an extension/scaling operation, which is quite useful for indexing
into arrays whose element size is larger than a byte. Of these two scaled-
indexed modes, one uses a 32-bit register as the index register, and the
other uses a 64-bit register.

The 32-bit form is convenient because most of the time indexes into an
array are held in a 32-bit integer variable. If you load that 32-bit integer into
a 32-bit register (Wi), you can easily use it as an index into an array with the

[Xn, Wi, extend]

form of the scaled-indexed addressing mode.
Ultimately, all effective addresses turn out to be 64 bits. In particular,

when the CPU adds Xn and Wi together, it must somehow extend the Wi
index value to 64 bits prior to adding them. The extend operator tells Gas
how to extend Wi to 64 bits.

The simplest forms of extend are the following:

[Xn|SP, Wi, uxtw]
[Xn|SP, Wi, sxtw]

335-129461_ch01_1P.indd 147335-129461_ch01_1P.indd 147 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
148 Chapter 3

The [Xn|SP, Wi, uxtw] form zero-extends Wi to 64 bits before adding
it to Xn, while the [Xn|SP, Wi, sxtw] form sign-extends Wi to 64 bits before
the addition.

Another form of the scaled-indexed addressing mode introduces the
scaled component. This form allows you to load elements from an array of
bytes, half words, words, or dwords scaled by the size of the array element
(1, 2, 4, or 8 bytes). These particular forms are not stand-alone addressing
modes that can be used with an arbitrary ldr or str instruction. Instead,
each addressing mode form is tied to a specific instruction size. The follow-
ing is the allowable syntax for the ldrb/ldrsb and strb instructions (Wd is a
32-bit destination register, and Ws is a 32-bit source register):

ldrb Wd, [Xn|SP, Wi, sxtw #0] // #0 is optional,
ldrb Wd, [Xn|SP, Wi, uxtw #0] // 0 is default shift.
ldrb Wd, [Xn|SP, Xi, lsl #0]

ldrsb Wd, [Xn|SP, Wi, sxtw #0]
ldrsb Wd, [Xn|SP, Wi, uxtw #0]
ldrsb Wd, [Xn|SP, Xi, lsl #0]

strb Ws, [Xn|SP, Wi, sxtw #0]
strb Ws, [Xn|SP, Wi, uxtw #0]
strb Ws, [Xn|SP, Xi, lsl #0]

These forms zero- or sign-extend Wi (or Xi) and add the result with Xn
to produce the EA. The previous instructions are equivalent to the follow-
ing (because the #0 is optional):

ldrb Wd, [Xn|SP, Wi, sxtw]
ldrb Wd, [Xn|SP, Wi, uxtw]
ldrb Wd, [Xn|SP, Xi]

ldrsb Wd, [Xn|SP, Wi, sxtw]
ldrsb Wd, [Xn|SP, Wi, uxtw]
ldrsb Wd, [Xn|SP, Xi]

strb Ws, [Xn|SP, Wi, sxtw]
strb Ws, [Xn|SP, Wi, uxtw]
strb Ws, [Xn|SP, Xi]

For the ldrh/ldrsh and strh instructions, you can specify either the 0 (×1)
or 1 (×2) scale factor:

ldrh Wd, [Xn|SP, Wi, sxtw #1] // #0 is also legal, or
ldrh Wd, [Xn|SP, Wi, uxtw #1] // no immediate value (which
ldrh Wd, [Xn|SP, Xi, lsl #1] // defaults to 0).

ldrsh Wd, [Xn|SP, Wi, sxtw #1]
ldrsh Wd, [Xn|SP, Wi, uxtw #1]
ldrsh Wd, [Xn|SP, Xi, lsl #1]

335-129461_ch01_1P.indd 148335-129461_ch01_1P.indd 148 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 149

strh Ws, [Xn|SP, Wi, sxtw #1]
strh Ws, [Xn|SP, Wi, uxtw #1]
strh Ws, [Xn|SP, Xi, lsl #1]

With a scaling factor of #1, these addressing modes compute Wi × 2 or
Xi × 2 (after any zero or sign extension) and then add the result with the
value in Xn to produce the EA. This scales the EA to access half-word values
(2 bytes per array element). If the scaling factor is #0, no scaling occurs, as
the scaling factor is 20. The preceding code must multiply Wi or Xi by an
appropriate scaling factor, if needed. Loading or storing half words allows a
scaling factor of only 0 or 1.

For the 32-bit ldr instruction (Wd is the destination register) and str
instruction (Ws is the 32-bit source register), the allowable scaling factors
are 0 (×1) or 2 (×4):

ldr Wd, [Xn|SP, Wi, sxtw #2] // #0 is also legal, or
ldr Wd, [Xn|SP, Wi, uxtw #2] // no immediate value (which
ldr Wd, [Xn|SP, Xi, lsl #2] // defaults to 0).

str Ws, [Xn|SP, Wi, sxtw #2]
str Ws, [Xn|SP, Wi, uxtw #2]
str Ws, [Xn|SP, Xi, lsl #2]

Finally, for the 64-bit ldr and str instructions, the allowable scaling fac-
tors are 0 (×1) and 3 (×8):

ldr Xd, [Xn|SP, Wi, sxtw #3] // #0 is also legal, or
ldr Xd, [Xn|SP, Wi, uxtw #3] // no immediate value (which
ldr Xd, [Xn|SP, Xi, lsl #3] // defaults to 0).

str Xs, [Xn|SP, Wi, sxtw #3]
str Xs, [Xn|SP, Wi, uxtw #3]
str Xs, [Xn|SP, Xi, lsl #3]

You’ll see the main uses for the scaled-indexed addressing modes in the
next chapter, when it discusses accessing elements of arrays.

	 3.7	 Address Expressions
Often, when accessing variables and other objects in memory, you will need
to access locations immediately before or after a variable rather than at
the address of the variable. For example, when accessing an element of an
array, or a field of a struct, the exact element or field is probably not at the
address of the variable itself. Address expressions provide a mechanism to
access memory at an offset from the variable’s address.

Consider the following legal Gas syntax for a memory address. This
isn’t a new addressing mode but simply an extension of the PC-relative
addressing mode:

varName + offset

335-129461_ch01_1P.indd 149335-129461_ch01_1P.indd 149 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
150 Chapter 3

This form computes its effective address by adding the constant offset
to the variable’s address. For example, the instruction

ldr W0, i + 4

loads the W0 register with the word in memory that is 4 bytes beyond the i
object (which, presumably, is in the .text section; see Figure 3-10).

W0

0x1003
0x1002
0x1001
0x1000 (address of i)

0x1004 (i + 4)
0x1005
0x1006
0x1007ldr w0, i + 4

Figure 3-10: Using an address expression to access data beyond a variable

The offset value in this example must be a constant (for example, 3). If
Index is a word variable, then varName + Index is not a legal address expression.
If you wish to specify an index that varies at runtime, you must use one of
the indirect or scaled-indexed addressing modes. Also remember that the
offset in varName + offset is a byte address. This does not properly index into
an array of objects unless varName is an array of bytes.

N O T E 	 The ARM CPU does not allow the use of the ldrb and ldrh instructions when using
the PC-relative addressing mode. You can only load words or double words when
using this addressing mode. Furthermore, because the instructions don’t encode the
LO 2 bits of the offset, any offset you specify using an address expression must be a
multiple of 4.

Until this point, the offset in the addressing mode examples has always
been a single numeric constant. However, Gas also allows a constant expres-
sion anywhere an offset is legal. A constant expression consists of one or more
constant terms manipulated by operators such as addition, subtraction,
multiplication, division, and a wide variety of others, as shown in Table 3-4.
Note that operators at the same precedence level are left-associative.

335-129461_ch01_1P.indd 150335-129461_ch01_1P.indd 150 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 151

Table 3-4: Gas Constant Expression Operators

Operator Precedence Description

+ 3 Unary plus (no effect on expression)

- 3 Unary minus (negates expression)

* 2 Multiplication

/ 2 Division

<< 2 Shift left

>> 2 Shift right

| 1 Bitwise OR

& 1 Bitwise AND

^ 1 Bitwise XOR

! 1 Bitwise AND-NOT

+ 0 Addition

- 0 Subtraction

Most address expressions, however, involve only addition, subtraction,
multiplication, and sometimes division. Consider the following example:

ldr w0, X + 2*4

This instruction will move the byte at address X + 8 into the W0 register.
The value X + 2*4 is an address expression that is always computed at

compile time, never while the program is running. When Gas encounters
the preceding instruction, it calculates

2 × 4

on the spot and adds this result to the base address of X in the .text section.
Gas encodes this single sum (base address of X plus 8) as part of the instruc-
tion; it does not emit extra instructions (that would waste time) to compute
this sum for you at runtime. Because Gas computes the value of address
expressions at compile time, and therefore Gas cannot know the runtime
value of a variable while it is compiling the program, all components of the
expression must be constants.

Address expressions are useful for accessing the data in memory beyond
a variable, particularly when you’ve used directives like .byte, .hword, .word,
and so on in a .data or .text section to tack on additional values after a data
declaration. For example, consider the program in Listing 3-1 that uses
address expressions to access the four consecutive words associated with
memory object i (each word is 4 bytes apart in memory).

// Listing3-1.S
//
// Demonstrates address expressions

335-129461_ch01_1P.indd 151335-129461_ch01_1P.indd 151 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
152 Chapter 3

#include "aoaa​.inc"

 .data
saveLR: .dword 0
outputVal: .word 0

ttlStr: .asciz "Listing 3-1"
fmtStr1: .asciz "i[0]=%d "
fmtStr2: .asciz "i[1]=%d "
fmtStr3: .asciz "i[2]=%d "
fmtStr4: .asciz "i[3]=%d\n"

 .text
 .extern printf

 .align 2
i: .word 0, 1, 2, 3

// Return program title to C++ program:

 .global getTitle
getTitle:
 lea x0, ttlStr
 ret

// Here is the asmMain function:

 .global asmMain
asmMain:

// "Magic" instruction offered without
// explanation at this point:

 sub sp, sp, #256

// Save LR so we can return to the C++
// program later:

 lea x0, saveLR
 str lr, [x0]

// Demonstrate the use of address expressions:

 lea x0, fmtStr1
 1 ldr w1, i + 0
 lea x2, outputVal
 str w1, [x2]
 vparm2 outputVal
 bl printf

 lea x0, fmtStr2
 2 ldr w1, i + 4
 lea x2, outputVal
 str w1, [x2]

335-129461_ch01_1P.indd 152335-129461_ch01_1P.indd 152 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 153

 vparm2 outputVal
 bl printf

 lea x0, fmtStr3
 3 ldr w1, i + 8
 lea x2, outputVal
 str w1, [x2]
 vparm2 outputVal
 bl printf

 lea x0, fmtStr4
 4 ldr w1, i + 12
 lea x2, outputVal
 str w1, [x2]
 vparm2 outputVal
 bl printf

 lea x0, saveLR
 ldr lr, [x0]
 add sp, sp, #256
 ret

Loading W1 from location i + 0 fetches 0 from the word array 1.
Loading W1 from location i + 4 fetches 1 from the second word in the array,
located 4 bytes beyond the first element 2. Loading W1 from location i + 8
fetches 2 from the third word in the array 3, located 8 bytes beyond the
first element. Loading W1 from location i + 12 fetches 3 from the fourth
word in the array 4, located 12 bytes beyond the first element.

Here’s the program’s output:

$./build Listing3-1
$./Listing3-1
Calling Listing 3-1:
i[0]=0 i[1]=1 i[2]=2 i[3]=3
Listing 3-1 terminated

Because the value at the address of i is 0, the output displays the four
values 0, 1, 2, and 3 as though they were array elements. The address expres-
sion i + 4 tells Gas to fetch the word appearing at i’s address plus 4. This is
the value 1, because the .word statement in this program emits the value 1 to
the .text segment immediately after the (word/4-byte) value 0. Likewise, for
i + 4 and i + 8, this program displays the values 2 and 3.

	 3.8	 Getting the Address of a Memory Object
Up to this point, this book has used the lea macro to obtain the address of
a memory object. Now that this chapter has provided the necessary prereq-
uisite information, instead of treating lea like a black box, it’s time to look
behind the curtains to see what this macro is doing for you.

335-129461_ch01_1P.indd 153335-129461_ch01_1P.indd 153 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
154 Chapter 3

The ARM CPU provides two instructions for computing the effective
address of a symbol in an assembly language program. The first is adr:

adr Xd, label

This instruction loads the 64-bit destination register (Xd) with the
address of the specified label. Because instruction encodings (operation
codes, or opcodes) are limited to 32 bits, a huge caveat is attached to adr:
it has room for only a 21-bit offset within the opcode, so label must be a
PC-relative address within ±1MB of the adr instruction. This effectively lim-
its adr to taking the address of symbols within the .text section.

To rectify this situation, the ARM CPU also provides the adrp (address
of a page) instruction. This instruction has roughly the same generic syntax
as adr:

adrp Xd, label

The instruction loads the address of the MMU page containing the
label into the destination register. By adding the offset of the label into that
page to the value in Xd, you can obtain the actual address of the memory
object, using code that looks something like this:

adrp Xd, label
add Xd, Xd, page_offset_of_label

At this point, Xd will contain the address of label.
This scheme has a couple of issues: first, computing the page offset of

the label symbol is done differently in macOS versus Linux. Second, when
you use the syntax just given to try the adrp instruction, you’ll find that Gas
rejects this on macOS.

Let’s first consider the Linux solutions to these problems, as they’re a
little simpler than those for macOS. If you’re not creating a PIE applica-
tion and the symbol is less than ±1MB away, you don’t have to use the adrp
instruction. Instead, you can get by with the single adr instruction. If the
data is more than ±1MB from the adr, you must use the adrp version. If you
need to reference a memory object outside the .text section, you must use
the adrp/add sequence. Here’s the code to do this:

adrp x0, label
add x0, x0, :lo12:label

The :lo12: item is a special operator that tells Gas to extract the LO
12 bits of label’s relocatable address; this value is the index into a 4,096-byte
memory management page. For more information on this operator, see
“For More Information” on page XX. Unfortunately, the macOS assembler
uses a completely different syntax to obtain the LO 12 bits of an address;
you must use the following instead:

335-129461_ch01_1P.indd 154335-129461_ch01_1P.indd 154 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 155

adrp x0, label@PAGE
add x0, x0, label@PAGEOFF

The lea macro resolves this issue, automatically expanding into the
appropriate sequence for whichever OS you’re using.

L INU X V S. M ACOS: A BSOLU T E A DDR ESSES

Apple’s macOS (and presumably, iOS, iPadOS, and so on) is far more restric-
tive about what you can and cannot do in a PIE program. Specifically, macOS
does not allow any absolute pointers in your .text section that reference other
sections. Linux, on the other hand, doesn’t have a problem with this at all, in
either PIE or non-PIE mode.

For example, say you’re working in Linux and have the following symbol in
your .data section:

var: .word 55

You can use the instruction

ldr x0, =var

to load the address of that symbol into X0. If you try to use this instruction in
macOS, however, the program will give the following complaint:

ld: Absolute addressing not allowed in arm64 code but used in
 'noPrint' referencing 'var'

Likewise, if you put the statement

ptrToVar: .dword var

in your .text section somewhere, Linux is perfectly happy with it, but macOS
will reject it, using roughly the same message.

Pointers into the .text section from other sections are perfectly acceptable
to Gas under macOS. Apparently, Apple thinks that the only way hackers are
going to determine your data memory location is by looking for addresses
buried in the executable code, while pointers in your .data, .rodata, and other
sections are immune to such attacks.

Ultimately, this means that you’ll need to use the adrp instruction (or the lea
macro) to obtain at least your first pointer out of the .text section. This makes
assembly language programming a touch more difficult under macOS than
under Linux. Fortunately, the lea macro helps smooth out these issues.

335-129461_ch01_1P.indd 155335-129461_ch01_1P.indd 155 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
156 Chapter 3

	 3.9	 The Push and Pop Operations
The ARM maintains a hardware stack in the stack segment of memory (for
which the OS reserves the storage). The stack is a dynamic data structure
that grows and shrinks according to certain needs of the program. It also
stores important information about the program, including local variables,
subroutine information, and temporary data.

The ARM CPU controls its stack via the SP register. When your pro-
gram begins execution, the OS initializes SP with the address of the last
memory location in the stack memory segment. Data is written to the stack
segment by pushing data onto the stack and popping it off the stack.

The ARM stack must always be 16-byte aligned—that is, the SP register
must always contain a value that is a multiple of 16. If you load the SP reg-
ister with a value that is not 16-byte aligned, the application will immedi-
ately terminate with a bus error fault. One of the stack’s primary purposes
is to provide a temporary storage area where you can save things such as
register values. You will typically push a register’s value onto the stack, do
some work (such as calling a function) that uses the register, and then pop
that value off the stack and back into the register when you want to restore
its value. However, the general-purpose registers are only 64 bits (8 bytes);
pushing a dword value on the stack will not leave it 16-byte aligned, which
will crash the system.

In this section, I’ll describe how to push and pop register values. Then
I’ll present three solutions to the problem of pushing dword values that
don’t leave the stack 16-byte aligned: wasting storage; pushing two registers
simultaneously; and reserving storage on the stack, then moving the regis-
ter’s data into this reserved area.

3.9.1  Using Double Loads and Stores
The ldp instruction will load two registers from memory simultaneously.
The generic syntax for this instruction is shown here:

ldp Xd1, Xd2, mem // mem is any addressing mode
ldp Wd1, Wd2, mem // except PC-relative.

The first form will load Xd1 from the memory location specified by mem
and Xd2 from the memory location 8 bytes later. The second form will load Wd1
from the specified memory location and Wd2 from the location 4 bytes later.

The stp instruction has a similar syntax; it stores a pair of registers into
adjacent memory locations:

stp Xd1, Xd2, mem // Store Xd1 to mem, Xd2 to mem + 8.
stp Wd1, Wd2, mem // Store Wd1 to mem, Wd2 to mem + 4.
 // mem is any addressing mode except
 // PC-relative.

335-129461_ch01_1P.indd 156335-129461_ch01_1P.indd 156 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 157

These instructions have many uses. With respect to using the stack,
however, the forms that load and store a pair of 64-bit registers will manipu-
late 16 bytes at a time—exactly what you need when pushing and popping
data on the stack.

3.9.2  Executing the Basic Push Operation
Many CPUs, such as the Intel x86-64, provide an explicit instruction that
will push a register onto the stack. Because of the 16-byte stack alignment
requirement, you can’t push a single 8-byte register onto the stack (without
creating a stack fault). However, if you’re willing to use 16 bytes of space on
the stack to hold a single register’s value, you can push that register’s value
on the stack with the following instruction:

str Xs, [sp, #-16]!

Remember, the pre-indexed addressing mode will first add –16 to SP
and then store Xs (the source register) at the new location pointed at by
SP. This store operation writes only to the LO 8 bytes of the 16-byte block
created by dropping SP down by 16 (wasting the HO 8 bytes). However, this
scheme keeps the CPU happy, so you won’t get a bus error.

This push operation does the following:

SP := SP - 16
[SP] := Xs

For example, assuming that SP contains 0x00FF_FFE0, the instruction

str x0, [sp, #-16]!

will set SP to 0x00FF_FFD0 and store the current value of X0 into memory
location 0x00FF_FFD0, as Figures 3-11 and 3-12 show.

Before

 str x0, [sp, #-16]!

instruction

X0

SP

00FF_FFF0
00FF_FFEC
00FF_FFE8
00FF_FFE4
00FF_FFE0
00FF_FFDC
00FF_FFD8
00FF_FFD4
00FF_FFD0
00FF_FFCC
00FF_FFC8

Figure 3-11: The stack segment before the str x0, [sp, #-16]! operation

After the str instruction, the stack looks like Figure 3-12.

335-129461_ch01_1P.indd 157335-129461_ch01_1P.indd 157 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
158 Chapter 3

After

 str x0, [sp, #-16]!

instruction

SP

00FF_FFF0
00FF_FFEC
00FF_FFE8
00FF_FFE4
00FF_FFE0
00FF_FFDC
00FF_FFD8
00FF_FFD4
00FF_FFD0
00FF_FFCC
00FF_FFC8

X0 value
on stack

X0

Figure 3-12: The stack segment after the str x0, [sp, #-16]! operation

Although this wastes 8 bytes of space on the stack (at addresses
0x00FF_FFD8 through 0x00FF_FFDF), the usage is probably temporary,
and the stack space will be reclaimed when the program pops the data off
the stack later.

3.9.3  Executing the Basic Pop Operation
The pop operation can be handled using the post-indexed addressing
mode and a ldr instruction:

ldr Xd, [sp], #16

This instruction fetches the data from the stack, where SP is pointing,
and copies that data into the destination register (Xd). When the opera-
tion is complete, this instruction adjusts SP by 16, restoring it to its original
value (its value before the push operation). Figure 3-13 shows the stack
before the pop operation.

Before

ldr x0, [sp], #16

instruction

00FF_FFF0
00FF_FFEC
00FF_FFE8
00FF_FFE4
00FF_FFE0
00FF_FFDC
00FF_FFD8
00FF_FFD4
00FF_FFD0
00FF_FFCC
00FF_FFC8

X0 value
on stackSP

X0

Figure 3-13: Before the pop operation

Figure 3-14 shows the stack organization after executing ldr.

335-129461_ch01_1P.indd 158335-129461_ch01_1P.indd 158 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 159

After

 ldr x0, [sp], #16

instruction

00FF_FFF0
00FF_FFEC
00FF_FFE8
00FF_FFE4
00FF_FFE0
00FF_FFDC
00FF_FFD8
00FF_FFD4
00FF_FFD0
00FF_FFCC
00FF_FFC8

X0 value
on stack

SP

X0 value from stack

Figure 3-14: After the pop operation

Popping a value does not erase the value in memory; it just adjusts the
stack pointer so that it points at the next value above the popped value.
However, never attempt to access a value you’ve popped off the stack. The
next time something is pushed onto the stack, the popped value will be
obliterated. Because your code isn’t the only thing that uses the stack (for
example, the OS uses the stack to do subroutines), you cannot rely on data
remaining in stack memory once you’ve popped it off the stack.

3.9.4  Pushing and Popping Registers in Other Ways
If you need to preserve at least two registers, you can reclaim the wasted
space shown in Figures 3-11 and 3-12 by using the stp instruction rather
than str. The following code fragment demonstrates how to push and pop
both X0 and X7 simultaneously:

stp x0, x7, [sp, #-16]!
 .
 . // Use X0 and X7 for other purposes.
 .
ldp x0, x7, [sp], #16 // Restore X0 and X7.

The third way to push data on the stack is to drop SP down by a mul-
tiple of 16 bytes and then store the value into the stack area by indexing
off the SP register. The following code does basically the same thing as the
stp/ldp pair:

sub sp, sp, #16 // Make room for X0 and X7.
stp x0, x7, [sp]
 .
 . // Use X0 and X7 for other purposes.
 .
ldp x0, x7, [sp]
add sp, sp, #16

335-129461_ch01_1P.indd 159335-129461_ch01_1P.indd 159 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
160 Chapter 3

While this clearly takes more instructions (and, therefore, takes longer
to execute), it’s possible to reserve the stack storage only once within a func-
tion and reuse that space throughout the execution of the function. You’ll
see examples of this in Chapter 5.

3.9.5  Preserving Register Values on the Stack
As you’ve seen in previous examples, the stack is a great place to temporar-
ily preserve registers so they can be used for other purposes. Consider the
following program outline:

Some instructions that use the X20 register.

Some instructions that need to use X20, for a
different purpose than the above instructions.

Some instructions that need the original value in X20.

The push and pop operations are perfect for this situation. By insert-
ing a push sequence before the middle sequence, and a pop sequence
after the middle sequence, you can preserve the value in X20 across those
calculations:

Some instructions that use the X20 register.

 str x20, [sp, #-16]!

Some instructions that need to use X20, for a
different purpose than the above instructions.

 ldr x20, [sp], #16

Some instructions that need the original value in X20.

This push sequence copies the data computed in the first sequence of
instructions onto the stack. Now the middle sequence of instructions can use
X20 for any purpose it chooses. After the middle sequence of instructions
finishes, the pop sequence restores the value in X20 so the last sequence of
instructions can use the original value in X20.

3.9.6  Saving Function Return Addresses on the Stack
Throughout the example programs up to this point, I’ve preserved the
return address appearing in the link register (LR) by using instructions like
the following:

lea x0, saveLR
str lr, [x0]
 .
 .
 .

335-129461_ch01_1P.indd 160335-129461_ch01_1P.indd 160 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 161

lea x0, saveLR
ldr lr, [x0]
ret

I’ve also mentioned that this is a truly horrible way of preserving the
value in LR. It takes six instructions to accomplish (remember, lea expands
into two instructions), making it slower and bulkier than it needs to be.
This scheme also creates problems when you have one user-written function
calling another: all of a sudden, you need two separate saveLR variables, one
for each function. In the presence of recursion (see Chapter 5) or, worse,
multithreaded code, this mechanism fails completely.

Fortunately, saving return addresses in the stack is the perfect solution.
The stack’s LIFO structure (see the next section) completely emulates the way
(nested) function calls and returns work, and it takes only a single instruction
to push LR onto the stack or pop LR off the stack. The earlier code sequence
can be easily replaced by:

str lr, [sp, #-16]!
 .
 .
 .
ldr lr, [sp], #16
ret

Using the stack to save and restore the LR register is probably the most
common use of the stack. Chapter 5 discusses managing return addresses
and other function-related values in much greater depth.

	 3.10	 Pushing and Popping Stack Data
You can push more than one value onto the stack without first popping
previous values off the stack. However, the stack is a last-in, first-out (LIFO)
data structure, so you must be careful in the way you push and pop mul-
tiple values.

For example, suppose you want to preserve X0 and X1 across a block of
instructions. The following code demonstrates the obvious (but incorrect)
way to handle this:

str x0, [sp, #-16]!
str x1, [sp, #-16]!
 Code that uses X0 and X1 goes here.
ldr x0, [sp], #16
ldr x1, [sp], #16

Unfortunately, this code will not work properly! Figures 3-15 through 3-18
show the problem, with each box in these figures representing 8 bytes (note
the addresses). Because this code pushes X0 first and X1 second, the stack
pointer is left pointing at X1’s value on the stack.

335-129461_ch01_1P.indd 161335-129461_ch01_1P.indd 161 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
162 Chapter 3

X0 value

After

 str x0, [sp, #-16]!

instruction
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

SP

Figure 3-15: The stack after pushing X0

Figure 3-16 shows the stack after pushing the second register (X1).

X0 value

After

str x1, [sp, #-16]!

instruction
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

X1 valueSP

Figure 3-16: The stack after pushing X1

When the ldr x0, [sp], #16 instruction comes along, it removes the
value that was originally in X1 from the stack and places it in X0 (see
Figure 3-17).

335-129461_ch01_1P.indd 162335-129461_ch01_1P.indd 162 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 163

X0 value

After

ldr x0, [sp], #16

instruction 00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

X1 valueX1 valueX0

SP

Figure 3-17: The stack after popping X0

Likewise, the ldr x1, [sp], #16 instruction pops the value that was origi-
nally in X0 into the X1 register. In the end, this code manages to swap the
values in the registers by popping them in the same order that it pushes
them (see Figure 3-18).

X0 value

After

 ldr x1, [sp], #16

instruction
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

X1 valueX1 valueX0

X0 valueX1

SP

Figure 3-18: The stack after popping X1

To rectify this problem, because the stack is a LIFO data structure, the
first thing you must pop is the last thing you push onto the stack. Therefore,
always pop values in the reverse order that you push them.

The correction to the previous code is shown here:

str x0, [sp, #-16]!
str x1, [sp, #-16]!
 Code that uses X0 and X1 goes here.
ldr x1, [sp], #16
ldr x0, [sp], #16

335-129461_ch01_1P.indd 163335-129461_ch01_1P.indd 163 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
164 Chapter 3

Also remember to always pop exactly the same number of bytes that you push.
In general, this means you’ll need exactly the same the number of pushes
and pops. If you have too few pops, you will leave data on the stack, which
may confuse the running program. If you have too many pops, you will
accidentally remove previously pushed data, often with disastrous results.

As a corollary, be careful when pushing and popping data within a loop. It’s
easy to put the pushes in a loop and leave the pops outside the loop (or
vice versa), creating an inconsistent stack. Remember, it’s the execution
of the push and pop operations that matters, not the number of push and
pop operations that appear in your program. At runtime, the number (and
order) of the push operations the program executes must match the num-
ber (and reverse order) of the pop operations.

Finally, remember that the ARM requires the stack to be aligned on a 16-byte
boundary. If you push and pop items on the stack (or use any other instruc-
tions that manipulate the stack), make sure that the stack is aligned on a
16-byte boundary before calling any functions or procedures that adhere to
the ARM requirements.

	 3.11	 Removing Data from the Stack Without Popping It
You may often discover that you’ve pushed data you no longer need onto
the stack. Although you could pop the data into an unused register, there
is an easier way to remove unwanted data from the stack: simply adjust the
value in the SP register to skip over the unwanted data on the stack.

Consider the following dilemma (in pseudocode, not actual assembly
language):

str x0, [sp, #-16]! // Push X0.
str x1, [sp, #-16]! // Push X1.

Some code that winds up computing some values we want
to keep in X0 and X1.

if(Calculation_was_performed) then

 // Whoops, we don't want to pop X0 and X1!
 // What to do here?

else

 // No calculation, so restore X1, X0.

 ldr x1, [sp], #16
 ldr x0, [sp], #16

endif;

Within the then section of the if statement, this code wants to remove
the old values of X0 and X1 without otherwise affecting any registers or
memory locations. How can you do this?

335-129461_ch01_1P.indd 164335-129461_ch01_1P.indd 164 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 165

Because the SP register contains the memory address of the item on the
top of the stack, we can remove the item from the top by adding the size
of that item to the SP register. In the preceding example, we wanted to
remove two dword items from the top. We can easily accomplish this by add-
ing 16 to the stack pointer:

str x0, [sp, #-16]! // Push X0
str x1, [sp, #-16]! // Push X1

Some code that winds up computing some values we want to keep
into rax and rbx.

if(Calculation_was_performed) then

 // Remove unneeded X0/X1 values
 // from the stack.

 add sp, sp, #32

else

 // No calculation, so restore X1, X0.

 ldr x1, [sp], #16
 ldr x0, [sp], #16

endif;

Effectively, this code pops the data off the stack without moving it any-
where. This code is faster than two dummy pop operations, because it can
remove any number of bytes from the stack with a single add instruction.

Remember to keep the stack aligned on a quad-word (16-byte) bound-
ary. This means you should always add a constant that is a multiple of 16 to
SP when removing data from the stack.

	 3.12	 Accessing Data Pushed onto the Stack
		 Without Popping It

Once in a while, you’ll push data onto the stack and will want to get a copy of
that data’s value, or perhaps you’ll want to change that data’s value without
actually popping the data off the stack (that is, you wish to pop the data off
the stack at a later time). The ARM [SP, #±offset] addressing mode provides
the mechanism for this.

Consider the stack after the execution of the following instruction:

stp x0, x1, [sp, #-16]! // Push X0 and X1

This produces the stack result shown in Figure 3-19.

335-129461_ch01_1P.indd 165335-129461_ch01_1P.indd 165 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
166 Chapter 3

X0 value
X1 value

RSP + 40
RSP + 32
RSP + 24
RSP + 16
RSP + 8
RSP + 0
RSP – 8
RSP – 16

SP

Figure 3-19: The stack after pushing X0 and X1

If you wanted to access the original X1 value without removing it from
the stack, you could cheat by popping the value, then immediately pushing
it again. Suppose, however, that you wish to access X0’s old value or another
value even farther up the stack. Popping all the intermediate values and
then pushing them back onto the stack is problematic at best, impossible
at worst.

However, as Figure 3-19 shows, each value pushed on the stack is at a
certain offset from the SP register in memory. Therefore, we can use the
[SP, #±offset] addressing mode to gain direct access to the value we are
interested in. In the preceding example, you can reload X0 with its original
value by using this single instruction:

ldr x0, [sp, #8]

This code copies the 8 bytes starting at memory address SP + 8 into the
X0 register. This value just happens to be the previous value of X0 that was
pushed onto the stack. You can use this same technique to access other data
values you’ve pushed onto the stack.

Don’t forget that the offsets of values from SP into the stack change
every time you push or pop data. Abusing this feature can create code that
is hard to modify; using this feature throughout your code will make it dif-
ficult to push and pop other data items between the point where you first
push data onto the stack and the point where you decide to access that data
again using the [SP, #±offset] memory addressing mode.

The previous section pointed out how to remove data from the stack by
adding a constant to the SP register. That pseudocode example could prob-
ably be written more safely as this:

stp x0, x1, [sp, #-16]!

Some code that winds up computing some values we want
to keep into X0 and X1.

if(Calculation_was_performed) then

 // Overwrite saved values on the stack with
 // new X0/X1 values (so the pops that
 // follow won't change the values in X0/X1).

335-129461_ch01_1P.indd 166335-129461_ch01_1P.indd 166 02/05/24 9:32 PM02/05/24 9:32 PM

—-1
—0
—+1

Memory Access and Organization 167

 stp x0, x1, [sp, #8]

endif;
ldp x0, x1, [sp], #16

In this code sequence, the calculated result was stored over the top of
the values saved on the stack. Later, when the program pops the values, it
loads these calculated values into X0 and X1.

T HE “M AGIC” INS T RUC T IONS

In most of the example programs in this book so far, the following lines of code
have appeared in asmMain (and in other functions):

// "Magic" instruction offered without
// explanation at this point:

sub sp, sp, #256
 .
 .
 .
add sp, sp, #256

At this point, it should be clearer what this code is doing: reserving storage on
the stack (and removing that storage before returning from the function).

Chapter 5 covers this scheme in greater detail when it discusses local vari-
ables and parameter functions. For the time being, just know that the purpose of
these statements is to reserve storage on the stack for parameters being passed
to the printf() function via the vparmn macros.

	 3.13	 Moving On
This chapter discussed memory organization and access, and how to cre-
ate and access memory variables on the ARM CPU. It went over problems
that can occur when accessing data beyond the end of a data structure that
crosses over into a new MMU page, then discussed little- and big-endian
memory organizations and how to use the ARM memory addressing modes
and address expressions to access those memory objects in multiple ways.
You learned how to align data in memory to improve performance, how
to obtain the address of a memory object, and the purpose of the ARM
stack structure.

Thus far, this book has generally employed only basic data types such
as different-sized integers, characters, Boolean objects, and floating-point
numbers. Fancier data types, such as pointers, arrays, strings, and structs
are the subject of the next chapter.

335-129461_ch01_1P.indd 167335-129461_ch01_1P.indd 167 02/05/24 9:32 PM02/05/24 9:32 PM

-1—
0—

+1—
168 Chapter 3

	 3.14	 For More Information
See https://ftp​.gnu​.org​/old​-gnu​/Manuals​/gas​-2​.9​.1​/html​_chapter​/as​_toc​.html
for details on the GNU assembler.

Learn more about the GNU linker at https://ftp​.gnu​.org​/old​-gnu​/Manuals​/
ld​-2​.9​.1​/html​_mono​/ld​.html.

For more about the macOS (LLVM) linker, see https://lld​.llvm​.org.

Visit the ARM developer website at https://developer​.arm​.com for more on
ARM CPUs.

Wikipedia offers an explanation of address space layout randomization
at https://en​.wikipedia​.org​/wiki​/Address​_space​_layout​_randomization.

To better understand position-independent executables, see https://en​
.wikipedia​.org​/wiki​/Position​-independent​_code.

For information on the :lo12: operator, see the “Assemb.ly Expressions”
section in the document downloadable from https://developer​.arm​.com​/
documentation​/100067​/0612​/armclang​-Integrated​-Assembler.

T ES T YOURSEL F

	 1.	 The PC-relative addressing mode indexes off which 64-bit register?

	 2.	 What does opcode stand for?

	 3.	 What type of data is the PC-relative addressing mode typically used for?

	 4.	 What is the address range of the PC-relative addressing mode?

	 5.	 In a register-indirect addressing mode, what does the register contain?

	 6.	 Which of the following registers is valid for use with the register-indirect
addressing mode?

a.	 W0

b.	 X0

c.	 XZR

d.	 SP

	 7.	 What instruction would you normally use to load the address of a memory
object into a register?

	 8.	 What is an effective address?

	 9.	 How would you align a variable in the .data section to an 8-byte
boundary?

10.	 What does MMU stand for?

11.	 What is an address expression?

12.	 What is the difference between a big-endian value and a little-endian
value?

335-129461_ch01_1P.indd 168335-129461_ch01_1P.indd 168 02/05/24 9:32 PM02/05/24 9:32 PM

https://ftp.gnu.org/old-gnu/Manuals/gas-2.9.1/html_chapter/as_toc.html
https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_mono/ld.html
https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_mono/ld.html
https://lld.llvm.org
https://developer.arm.com
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Position-independent_code
https://en.wikipedia.org/wiki/Position-independent_code
https://developer.arm.com/documentation/100067/0612/armclang-Integrated-Assembler
https://developer.arm.com/documentation/100067/0612/armclang-Integrated-Assembler

—-1
—0
—+1

Memory Access and Organization 169

13.	 If W0 contains a 32-bit big-endian value, what instruction could you use to
convert it to a little-endian value?

14.	 If W0 contains a 16-bit little-endian value, what instruction could you use
to convert it to a big-endian value?

15.	 If X0 contains a 64-bit big-endian value, what instruction could you use to
convert it to a little-endian value?

16.	 Explain, step-by-step, what the str X0, [sp, #-16]! instruction does.

17.	 Explain, step-by-step, what the ldr X0, [sp], #16 instruction does.

18.	 When using the push and pop operations to preserve registers, you must
always pop the registers in the ________ order that you pushed them.

19.	 What does LIFO stand for?

335-129461_ch01_1P.indd 169335-129461_ch01_1P.indd 169 02/05/24 9:32 PM02/05/24 9:32 PM

