INSIDE THE MAIN FUNCTION

As you learned in Chapter 10, a C program

begins by executing a function named main,
which is called from a startup function in

the C hosted environment. The main function

will call other functions (subfunctions) to do most of
the processing. Even a simple “Hello, World!” pro-
gram needs to call another function to write the mes-
sage on the screen.

In this chapter, we’ll focus on the main function, but the concepts ap-
ply to all the functions we’ll be writing. We’ll begin with a detailed look at
the call stack, which is used for saving values and for local variables. Then
we’ll look at how to process data in a function and how to pass arguments
to other functions. I'll wrap up the chapter by showing you how to use this
knowledge to write the main function in assembly language.

Using the Call Stack

The call stack, commonly referred to simply as the stack, is a very useful place
for creating local variables and saving items within a function. Before we
cover how to use the stack for these purposes, you need to understand what
stacks are and how they work.
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Stacks in General

A stack is a linear data structure created in memory to store data items. In-
sertion of a data item onto (or deletion from) a stack can be done at only
one end, called the top. Programs keep track of the top of the stack with a
stack pointer.

Informally, you can think of a stack as being organized like a stack of
dinner plates on a shelf. You need to be able to access only the item at the
top of the stack. (And, yes, if you pull out a plate from somewhere within
the stack, you will probably break something.) There are two fundamental
operations on a stack:

push data_item Places the data_item at the top of the stack and moves
the stack pointer to point to this latest item
pop location Moves the data item at the top of the stack to location and

moves the stack pointer to point to the item now at the top of the stack

The stack is a last in, first out (LIFO) data structure. The last thing to be
pushed onto the stack is the first thing to be popped off.

To illustrate the stack concept, let’s continue with the dinner plate ex-
ample. Say we have three differently colored dinner plates: a red one on the
dining table, a green one on the kitchen counter, and a blue one on the bed-
side table. We’ll stack them on the shelf in the following way:

1. Push red plate.
2. Push green plate.
3. Push blue plate.

At this point, our stack of plates looks like Figure 11-1.

| Blue plate |

| Green plate |

| Red plate |

Figure 11-1: Three dinner
plates in a stack

Now we perform the next operation:
4. Pop kitchen counter.

This moves the blue plate to the kitchen counter (recall that the blue
plate was previously on the bedside table) and leaves the stack of dinner
plates as shown in Figure 11-2.



| Green plate |

| Red plate |

Figure 11-2: One dinner
plate has been popped
from the stack.

If you have guessed that it’s easy to really mess up a stack, you're right. A
stack must be used according to a strict discipline. Within any function:

*  Always push an item onto the stack before popping anything off.
*  Never pop more things off than you have pushed on.

*  Always pop everything off the stack that you have pushed on.

If you have no use for the item(s) that you have pushed onto the stack,
you may simply set the stack pointer to where it was when the function was
first entered. This is equivalent to discarding the items that are popped off.
(Our dinner plate analogy breaks down here.)

A good way to maintain this discipline is to think of the use of paren-
theses in an algebraic expression. A push is analogous to a left parenthesis
and a pop to a right parenthesis. The pairs of parentheses can be nested, but
they have to match. An attempt to push too many items onto a stack is called
stack overflow. An attempt to pop items off the stack beyond the bottom is
called stack underflow.

A stack is implemented by dedicating a contiguous area of main mem-
ory to it. Stacks can grow in either direction in memory, into higher ad-
dresses or lower. An ascending stack grows into higher addresses, and a
descending stack grows into lower addresses. The stack pointer can point to
the top item on the stack, a full stack, or to the memory location where the
next item will be pushed onto the stack, an empty stack. These four possible
stack implementations are shown in Figure 11-3, with the integers 1, 2, and
3 pushed onto the stack in that order. Notice that memory addresses are in-
creasing downward in this figure, which is the way we usually view them in the
gdb debugger.

1 1 1 1
1 1 1 1
1 1 1 1
2eee | sp —>| 2222 3 geee 222
sp—=>| 3 3 _‘%'3 1 1
2 2 B 2 2
1 1 g sp > 3 3
eeee 2eee § geee | sp—>| @ee?
| [ £ 1 1
1 1 1 1
1 1 1 1
Full Empty Full Empty
descending descending ascending ascending

Figure 11-3: Four ways to implement a stack
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The call stack in our environment is a full descending stack. To under-
stand this choice, think about how you might organize things in memory.
Recall that the control unit automatically increments the program counter
as your program is executed. Programs come in vastly different sizes, so
storing the program instructions at low memory addresses allows maximum
flexibility with respect to program size.

The stack is a dynamic structure. You don’t know how much stack space
will be required by any given program as it executes, so it’s impossible to
know how much space to allocate. To allocate as much space as possible,
while preventing it from colliding with program instructions, start the stack
at the highest memory address and have it grow toward lower addresses.

This is a highly simplified rationalization for implementing stacks that
grow “downward” in memory. The organization of various program ele-
ments in memory is much more complex than the description given here,
but this may help you understand that there are some good reasons for what
may seem to be a rather odd implementation.

The A64 architecture does not have push and pop instructions. It has in-
structions that allow you to effectively push items onto or pop items off of
the stack, but most of the operations on the stack are done by allocating
memory on the call stack and then directly storing items into or loading
items from this allocated memory. Next, we’ll look at how functions use the
call stack.

The Stack Frame

Each function that calls another function needs to allocate memory on the
stack for that function to use to save items and store local variables. This al-
located memory is called a stack frame or activation record. To see how this
works, we’ll start with a program that has one local variable and calls two
functions in the C standard library: printf and scanf. The program is shown
in Listing 11-1.

// Increment an integer.
#include <stdio.h>

int main(void)

{

int x;

printf("Enter an integer: ");
scanf("%i", 8&x);

X++;

printf("Result: %i\n", x);
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return 0;

}

Listing 11-1: A program to increment an integer

You can see how a stack frame is created by looking at the assembly lan-
guage generated by the compiler, shown in Listing 11-2. I'll be referring to
the numbered lines in this listing in the next several sections of this chapter,

through page 222.
.arch armv8-a
.file "inc_int.c"
.text
@ .section .rodata
.align 3
.LCo:
.string "Enter an integer: "
.align 3
.LCa:
@ .string "%i"
.align 3
.LC2:
.string "Result: %i\n"
.text
.align 2
.global main
.type  main, %function
main:
® stp x29, x30, [sp, -32]!
mov X29, sp
adrp x0, .LCo
add X0, x0, :lo12:.LCO
bl printf
A add x0, sp, 28
mov x1, XO
® adrp xo0, .LC1
add X0, x0, :lo12:.LC1
bl __iso0c99 scanf
® ldr wo, [sp, 28]
add w0, w0, 1
@ str wo, [sp, 28]
ldr wo, [sp, 28]
mov wl, wo
adrp x0, .LC2
add x0, x0, :lo12:.LC2

117
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Create stack frame
Set our frame pointer
Page address

Offset in page

Address of x

Load int

X++;
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bl printf

mov w0, 0
® 1dp x29, x30, [sp], 32
ret

.size  main, .-main
.ident "GCC: (Debian 10.2.1-6) 10.2.1 20210110"
.section .note.GNU-stack,"",@progbits

Listing 11-2: The compiler-generated assembly language for the program in Listing 11-1

The instructions used to create the stack frame form the function
prologue. The first instruction in a function prologue is usually an stp
instruction:

stp—Store register pair
stpws1, ws2, [xb{, offset}] stores the value in ws1 at the address in xb
and the value in ws2 at xb + 4. If offset exists, it must be a multiple of 4
and is added to the address before storing the register values; xb is not
changed.

stp xs1, xs2, [xb{, offset}] stores the value in xs1 at the address in xb
and the value in xs2 at xb + 8. If offset exists, it must be a multiple of 8
and is added to the address before storing the register values; xb is not
changed.

stp—Store register pair, pre-index
stpws1, ws2, [xb, offset]! adds offset, which must be a multiple of 4, to
xb. It then stores the value in ws1 at the new address in xb and the value
inws2 at xb + 4.

stp xs1, xs2, [xb, offset]! adds offset, which must be a multiple of 8, to
xb. It then stores the value in xs1 at the new address in xb and the value
in xs2 at xb + 8.

stp—Store register pair, post-index
stpws1, ws2, [xb], offset stores the value in ws1 at the address in xb and
the value in ws2 at xb + 4. It then adds offset, which must be a multiple of
4, to xb.

stp xs1, xs2, [xb], offset stores the value in xs1 at the address in xb and
the value in xs2 at xb + 8. It then adds offset, which must be a multiple of
8, to xb.

The operand order for almost all other A64 instructions is destination(s), source(s),
but for the store instructions, it’s the opposite.

Almost all the functions we’ll write will begin with an stp instruction that
looks like this:

stp x29, x30, [sp, -32]!

The compiler did this at the beginning of the function in Listing 11-2, creat-
ing the stack frame ©.



The Procedure Call Standard for the Arm 64-Bit Architecture (AArch64) doc-
umentation (available in PDF and HTML formats at https://github.com/ARM
software/abi-aa/releases) specifies that the frame pointer (stored in register x29,
also named fp) should point to the top of the stack frame, which is where the
calling function’s frame pointer is stored. The instruction mov x29, sp will
set the called function’s frame pointer, as shown in Listing 11-2.

The way the stp instruction has specified the stack memory address
here, [sp, -32]!, probably doesn’t make a lot of sense to you. Let’s look at
how instructions access memory in the A64 architecture.

A64 Memory Addressing

There are two ways that an instruction might refer to a memory address: the
address could be encoded as part of the instruction, usually called an abso-
lute address, or it could use relative addressing, where the instruction specifies
an offset from a base address. In the latter case, the size of the offset and the
location of the base address are encoded in the instruction.

All instructions in the A64 architecture are 32 bits long, but addresses
are 64 bits long. We’ll look at the details of the machine code in Chapter 12,
but it’s clear that a 64-bit address will not fit within a 32-bit instruction. To
refer to a 64-bit address, instructions use one of the relative addressing
modes listed in Table 11-1 to compute the address when they are executed.

Table 11-1: A64 Addressing Modes

Mode Syntax Note

Literal label pcrelative

Base register [base] Register only

Base plus offset  [base, offset]  Register-relative

Pre-indexed [base, offset]! Add offset to register before
Postindexed [base], offset  Add offset to register after

Each of the addressing modes in Table 11-1 starts with a 64-bit address
in a base register. The literal mode uses pc-relative addressing, where the pro-
gram counter serves as the base register. If Iabel is in the same section as
the instruction that references it, the assembler computes the address off-
set from the referencing instruction to the labeled instruction and fills in
this offset as part of the referencing instruction. If the label is in another
section, the linker will compute the offset and fill that in where the label is
referenced. The number of bits allowed in the instruction limits the size of
the address offset.

One of the advantages of pc-relative addressing is that it gives us position-
independent code (PIC), which means the function will execute correctly no
matter where it is loaded into memory. The default for the gcc compiler
in our environment is to produce PIC, with the linking phase producing a
position-independent executable (PIE). This means the linker doesn’t specify a
load address for the program, so the operating system can load the program
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wherever it chooses. Not including the load address with the executable file
improves security.

In the other four modes, the base register is a general-purpose register,
x0—x30, or sp. For the base-plus-offset mode, the offset can be an immediate
value or in a register. The offset is sign-extended to 64 bits and added to the
value in the base register to compute the address. If the offset is in a register,
it can be scaled so that it is a multiple of the number of bytes being loaded
or stored. You'll see how this works when you learn to process integer arrays
in Chapter 17.

In the pre-indexed mode, the computed address is stored in the base
register before loading or storing the value. In the post-indexed mode, the
computed address is stored in the base register affer loading or storing the
value.

For the pre-indexed mode, the offset can only be an immediate value.
The post-indexed mode allows an immediate value for the offset or, for
some advanced programming techniques, an offset value in a register.

The call stack in our environment is full-descending (see Figure 11-3),
so the stp instruction uses the pre-indexed addressing mode. In the func-
tion in Listing 11-2, the address is specified as [sp, -32]! ®. This subtracts
32 from the stack pointer before storing the caller’s frame pointer and return
address on the stack. This effectively allocates 16 bytes on the stack for this
function’s use, then pushes the return address and the caller’s frame pointer
onto the call stack. The number of bytes allocated for the stack frame must
always be a multiple of 16 because the stack pointer, sp, must always be
aligned on a 16-byte address boundary.

After the function has completed its processing, we need a function epi-
logue to restore the caller’s frame pointer and link register and to delete the
stack frame. In the function in Listing 11-2, this is done with the following
instruction:

1dp x29, x30, [sp], 32

This instruction loads the two values at the top of the stack into the
frame pointer and link register, then adds 32 to the stack pointer ®. This
effectively pops the two values off the top of the stack into the x29 and x30
registers and then deletes this function’s stack frame. Let’s look at some
variants of the 1dp instruction, which allows us to load two values at a time
from memory:

ldp—Load register pair
ldp wd1, wd2, [xb{, offset}] loads the value at the address in xb into wd1
and the value at xb + 4 into wd2. If offset exists, it must be a multiple of 4
and is added to the address before loading the values; xb is not changed.

ldp xd1, xd2, [xb{, offset}] loads the value at the address in xb into xd1
and the value at xb + 8 into xd2. If offset exists, it must be a multiple of 8
and is added to the address before loading the values; xb is not changed.



ldp—Load register pair, pre-index
ldp wd1, wd2, [xb, offset]! adds offset, which must be a multiple of 4, to
xb. It then loads the value at the new address in xb into wd1 and the value
at xb + 4 into wd2.

ldp xd1, xd2, [xb, offset]! adds offset, which must be a multiple of 8, to
xb. It then loads the value at the new address in xb into xd1 and the value
at xb + 8 into xd2.

ldp—Load register pair, post-index
ldp wd1, wd2, [xb], offset loads the value at the address in xb into wd1 and
the value at xb + 4 into wd2. It then adds offset, which must be a multiple
of 4, to xb.

ldp xd1, xd2, [xb], offset loads the value at the address in xb into xd1 and
the value at xb + 8 into xd2. It then adds offset, which must be a multiple
of 8, to xb.

Next, we’ll see how this function uses the other 16 bytes of stack memory.

Local Variables on the Call Stack

Local variables in C can be directly accessed by their names only in the func-
tion where they’re defined. We can allow another function to access a local
variable in our function, including changing its value, by passing the address
of that variable to the other function. This is what enables scanf to store a
value for x, as you’ll see on page 221.

You learned in Chapter 9 that CPU registers can be used as variables.
But if we were to use CPU registers to hold all of our variables, we’d soon
run out of registers, even in a small program. So, we need to allocate space
in memory for variables.

As we’ll see later in this chapter, a function needs to preserve the con-
tents of some registers for the calling function. If we want to use such a reg-
ister in our function, a local variable would be a good place to store a copy of
its content so we can restore it before returning to the calling function.

The stack frame meets the requirements of local variables. It’s created
when the function first starts, and it’s deleted once the function completes.
The memory in a stack frame is easily accessed using the base-plus-offset
addressing mode (see Table 11-1), with sp as the base addressing register. An
example in Listing 11-2 is where we load the integer:

ldr wo, [sp, 28]

This instruction loads the 32-bit word located 28 bytes from the address in sp
into wo ®. The function treats its stack frame as a record rather than a stack
with this code. You’ll learn about records in Chapter 17.

Figure 11-4 gives a pictorial view of the completed stack frame for the
main function in Listings 11-1 and 11-2.
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sp A Memory for A
| | H stack growth '
\ 0 Caller's fp
fp
| /|y+8 Return address
+16
+24 X

Figure 11-4: The stack frame for the function in Listings 11-1
and 11-2

The two addresses on the stack each take 8 bytes, and the int variable,
x, takes 4 bytes. The memory in the gray area is unused but necessary for
keeping the stack pointer, sp, aligned on a 16-byte address boundary.

Now that you know how to use a stack frame, let’s look at how this func-
tion processes data.

Processing Data in a Function

Chapter 11

Ab64 is a load—store architecture, which means the instructions that operate on
data cannot access memory. There is a separate group of instructions for
moving data to and from memory.

This is in contrast to a register—memory architecture, which includes in-
structions that can operate on data in memory. The data operations are still
performed by the arithmetic/logic unit in the CPU (see Figure 9-1), but they
use registers that are hidden from the programmer. The Intel x86 is an ex-
ample of a register-memory architecture.

The processing in the main function in Listing 11-2 is very simple: the
program adds 1 to an integer. But before it can perform this operation,
it needs to load the value into a register using the ldr instruction ®. Since
this program changes the value in the variable, the new value must be stored
back into memory with the str instruction @.

Let’s look at some common instructions used for loading values from
memory:

ldr—Load register, pc-relative
1dr wd, addr loads wd with the 32-bit value at memory location addr, which
must be £1MB from this instruction. Bits 63 to 32 of xd are set to 0.

1dr xd, addr loads xd with the 64-bit value at memory location addr, which
must be £1MB from this instruction.

ldr—Load register, base register-relative
ldr wd, [xb{, offset}]loads wd with the 32-bit value at the memory lo-
cation obtained by adding the address in xb and the optional offset,



which is a multiple of 4 in the range 0 to 16,380. Bits 63 to 32 of xd are
set to 0.

ldr xd, [xb{, offset}]loads xd with the 64-bit value at the memory loca-
tion obtained by adding the address in xb and the optional offset, which
is a multiple of 8 in the range 0 to 32,760.

ldrsw—Load register, signed word, base register-relative
ldrsw wd, [xb{, offset}]loads wd with the 32-bit value at the memory
location obtained by adding the address in xb and the optional offset,
which is a multiple of 4 in the range 0 to 16,380. Bits 63 to 32 of xd are
set to a copy of bit 31 of the loaded word.

ldrb—Load register, unsigned byte, base register-relative
ldrb wd, [xb{, offset}] loads the low-order byte of wd with the 8-bit value
at the memory location obtained by adding the address in xb and the
optional offset, which is in the range 0 to 4,095. Bits 31 to 8 of xd are set
to 0; bits 63 to 32 are unchanged.

ldrsb—Load register, signed byte, base register-relative
ldrsb wd, [xb{, offset}] loads the low-order byte of wd with the 8-bit
value at the memory location obtained by adding the address in xb and
the optional offset, which is in the range 0 to 4,095. Bits 31 to 8 of xd are
set to a copy of bit 7 of the loaded byte; bits 63 to 32 are unchanged.

Here are some similar instructions for storing values in memory:

str—Store register, pc-relative
str ws, addr stores the 32-bit value in ws at memory location addr, which
must be =1MB from this instruction.

str xs, addr stores the 64-bit value in xs at memory location addr, which
must be £1MB from this instruction.

str—Store register, base register-relative
str ws, [xb{, offset}] stores the 32-bit value in ws at the memory loca-
tion obtained by adding the address in xb and the optional offset, which
is a multiple of 4 in the range 0 to 16,380.

str xs, [xb{, offset}] stores the 64-bit value in xs at the memory loca-
tion obtained by adding the address in xb and the optional offset, which
is a multiple of 8 in the range 0 to 32,670.

strb—Store register, byte, base register-relative
strb ws, [xb{, offset}] stores the low-order 8 bits in ws at the memory
location obtained by adding the address in xb and the optional offset,
which is in the range 0 to 4,095.

The program simply adds 1 to the variable, which can be done with the
add instruction. I'll include the sub instruction here because it’s very similar,
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but I'll give only some basic syntax (both instructions have several options,
which are described in the manuals):

add—Add extended register
add wd, ws1, ws2{, xtnd amnt} adds the values in ws1 and ws2 and stores the
result in wd. The value added from ws2 can be a byte, halfword, word, or
doubleword. It can be sign- or zero-extended and then left-shifted 0 to
4 bits before the addition, using the xtnd amnt option.

add xd, xs1, xs2{, xtnd amnt} adds the values in xs1 and xs2 and stores
the result in xd. The value added from xs2 can be a byte, halfword, word,
or doubleword. It can be sign- or zero-extended and then left-shifted 0
to 4 bits before the addition, using the xtnd amnt option.

add—Add immediate
add wd, ws, imm{, shft} adds imm to the value in ws and stores the result
in wd. The imm operand is an unsigned integer in the range 0 to 4,095,
which can be left-shifted 0 or 12 bits before the addition, using the shft
option.

add xd, xs, imm{, shft} adds imm to the value in xs and stores the result
in xd. The imm operand is an unsigned integer in the range 0 to 4,095,
which can be left-shifted 0 or 12 bits before the addition, using the shft
option.

sub—Subtract extended register
sub wd, ws1, ws2{, xtnd amnt} subtracts the value in ws2 from ws1 and
stores the result in wd. The value subtracted from ws2 can be a byte,
halfword, word, or doubleword. It can be sign- or zero-extended and
then left-shifted 0 to 4 bits before the subtraction, using the xtnd amnt
option.

sub xd, xsi1, xs2{, xtnd amnt} subtracts the value in xs2 from xs1 and
stores the result in xd. The value subtracted from xs2 can be a byte,
halfword, word, or doubleword. It can be sign- or zero-extended and
then left-shifted 0 to 4 bits before the subtraction, using the xtnd amnt
option.

sub—Subtract immediate
sub wd, ws, imm{, shft} subtracts imm from the value in ws and stores the
result in wd. The imm operand is an unsigned integer in the range 0 to
4,095, which can be left-shifted 0 or 12 bits before the subtraction, using
the shft option.

sub xd, xs, imm{, shft} subtracts imm from the value in xs and stores the
result in xd. The imm operand is an unsigned integer in the range 0 to
4,095, which can be left-shifted 0 or 12 bits before the subtraction, using
the shft option.
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Table 11-2 lists the allowable values for the xtnd option in the add and sub
instructions.

Table 11-2: Allowable Values for xtnd in add
and sub Instructions

xtnd  Effect

uxtb  Unsigned extension of byte

uxth  Unsigned extension of halfword
uxtw  Unsigned extension of word

uxtx  Unsigned extension of doubleword
sxtb  Signed extension of byte

sxth  Signed extension of halfword

sxtw  Signed extension of word

sxtx  Signed extension of doubleword

The extension begins with the indicated low-order portion of the source
register and adds bits to the left to match the width of the other registers in
the instruction. For unsigned extension, the added bits are all 0. For signed
extension, the added bits are copies of the highest-order bit of the starting
value. When using w registers, uxtw can be replaced with 1s1; with x registers,
uxtx can be replaced with 1sl.

It might seem meaningless to extend a doubleword, which is already 64
bits wide, to match the size of an x register, but the instruction syntax re-
quires that we use the entire xtnd amnt option if we wish to shift the value.

As an example of how these size extensions work, let’s start with the fol-
lowing values in x2 and x3:

X2: Oxaaaaaaaaaaaaaaaa
X3: 0x89abba89fedccdef

The instruction sequence

add w0, w3, w2, uxtb
add wl, w3, w2, sxtb
gives:

x0: Oxfedcce99
x3: Oxfedccd99

We’ll see other instructions that use these width extensions as we continue
through the book.

Now that you know how to do the arithmetic, let’s look at how to call the
other functions.
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There are several ways for a function to pass arguments to another function.
I'll start by describing how to use registers for passing arguments. I'll discuss
other ways when I cover subfunctions in more detail in Chapter 14.

Recall from Chapter 2 that when a function calls another function, it
can pass arguments that the called function can use as parameters. In prin-
ciple, the C compiler—or you, when you’re writing in assembly language—
could use any of the 31 general-purpose registers, except the link register,
x30, to pass arguments from one function to another. Just store the argu-
ments in the registers and call the desired function. Of course, the calling
and called functions need to agree on exactly which register each argument
is in.

The best way to avoid making mistakes is to follow a standard set of
rules. This is especially important if more than one person is writing code
for a program. Other people have realized the importance of having such
standards and have developed an application binary interface (ABI) that in-
cludes a set of standards for passing arguments in the A64 architecture. The
compiler we’re using, gcc, follows the rules in the Procedure Call Standard for
the Arm 64-Bit Architecture (referenced on page 213), and we’ll do the same
for the assembly language we write.

Table 11-3 summarizes the standards for how the called function uses
the registers.

Table 11-3: General-Purpose Register Usage

Register  Usage Save?
X0—X7 Parameter; result No
x8 Address of result No
X9-x18 Scratch No
X19-x28 Variables Yes
X29 Frame pointer Yes
x30 Link register Yes
sp Stack pointer Yes
Xzr Zero register N/A

We would use wn instead of xn for 32-bit register names. We’re using
64-bit addressing in this book. Because x29 and x30 will always contain ad-
dresses, we’ll never use w29 or w30.

The “Save?” column shows whether a called function needs to preserve
the value in that register for the calling function. If we need to use a register
that must be preserved, we’ll create a local variable in our stack frame for
that purpose.

The calling function passes the arguments in the registers in the order
in which they’re listed, from left to right in a C function, starting with xo (or
wo for a 32-bit value). This allows for the passing of up to eight arguments,



x0—x7. You’ll see how to use the call stack to pass more than eight arguments
in Chapter 14.

For an example of how to pass arguments, let’s look at the call to scanf in
Listing 11-1:

scanf("%i", 8x);

Let’s start with the second argument, the address of x. In Figure 11-4, x
is located at an offset of 28 bytes from the stack pointer, sp. Looking at the
assembly language generated by the compiler in Listing 11-2, you can see
that computing the address can be done by adding 28 to sp @. Since it’s the
second argument, it needs to be moved to x1.

The first argument—the text string "%i", which is created with a .string
assembler directive @—is more complex. The general format for the .string
directive is:

.string "text"

This creates a C-style text string as a char array with one byte for each charac-
ter code point in text, plus one byte for the terminating NUL character.

The compiler places the three text strings in this program in the .rodata
section @ of the object file. The loader/linker typically loads .rodata sections
into the text segment following the executable code. Notice that each text
string is aligned to an 8-byte (64 bits) address boundary with a .align 3 direc-
tive. This might make the code execute a little faster.

When you pass an array to a function in C, only the address of the first
element in the array gets passed. So, the address of the first character of "%1"
is passed to scanf. The A64 architecture provides two instructions for getting
an address into a register:

adr—Address
adr xd, addr loads the memory address addr into xd; addr must be within
+1MB of this instruction.

adrp—Address page
adrp xd, addr loads the page address of addr into bits 63 to 12 of xd, with
bits 11 to 0 set to 0. The page address is the next-lower 4KB address
boundary of addr, and addr must be within 4GB of this instruction.

Both instructions use the literal addressing mode (see Table 11-1) to
refer to a memory address. They each allow a 21-bit offset value, hence the
+1MB range for adr. With os in the low-order 12 bits, the adrp instruction
gives a 33-bit offset from the pc, for an addressing range of +4GB from the
pc, but with 4KB granularity.

The adrp instruction effectively treats memory as being divided into 4KB
pages. (These pages are conceptually distinct from the memory pages that
the operating system uses to manage main memory.) It loads the beginning
address of a 4KB page, the page address, into the destination register. Com-
pared to the adr instruction, this increases the range of addresses we can
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load into a register from +1MB to 4GB, but we still need to add the offset
within the 4KB page to the page address in the register.

Thus, we can load a 64-bit address located within 4GB with a two-
instruction sequence. The compiler did this in Listing 11-2 using the follow-
ing code @:

adrp x0, .LC1
add x0, x0, :lo12:.LC1

Since the label .LC1 is in the .rodata section, the linker computes the off-
set from the instruction to the label. The adrp instruction loads the page
number of that offset into x0. The :1012: modifier tells the assembler to use
only the low-order 12 bits of the offset as the immediate value for the add in-
struction. This two-step process may seem a bit puzzling to you. It’s due to
the limited number of bits available for immediate values in an instruction;
you’ll see the details when we cover how instructions are coded in binary in
Chapter 12.

After loading the arguments into registers, we transfer the program flow
to the other function with a bl or a blr instruction:

bl—Branch and link
bl addr adds 4 to the address in the pc and loads the sum into x30. It then
loads the memory address of addr into the pc, thus branching to addr,
which must be within +128MB of this instruction.

blr—Branch and link, register
blr xs adds 4 to the address in the pc and loads the sum into x30. It then
moves the 64-bit address in xs to the pc, thus branching to that address.

These instructions are used to call a function. Adding 4 to the address in
the pc gives the address of the instruction immediately after the bl or blr in
memory. We usually want the called function to return to this location. The
x30 register is used as a link register by these two branching instructions.

In the next section, we’ll write the program in assembly language. It’l]
be very similar to what the compiler generated, but we’ll use names that
make it easier to read.

Writing main in Assembly Language

inc_int.s

Chapter 11

Listing 11-3 shows my assembly language version of the inc_int program. It
closely follows the assembly language generated from the C version by the
compiler in Listing 11-2, but I've added comments and used more mean-
ingful labels for the string constants. This should make it a little easier to
understand how the program uses the stack and passes arguments to other
functions.

// Increment an integer.
.arch armv8-a
// Stack frame
® .equ x, 28



0 .equ FRAME, 32
// Constant data
® .section .rodata
prompt:
.string "Enter an integer: "
input_format:
.string "%i"

result:

.string "Result: %i\n"
// Code

.text

.align 2

.global main

.type main, %function
main:

O stp fp, 1r, [sp, FRAME]! // Create stack frame
mov fp, sp // Set our frame pointer
adr x0, prompt // Prompt user
bl printf
add X1, sp, X // Address for input
adr x0, input_format // scanf format string

® bl scanf
ldr wo, [sp, x] // Get x
add wl, wo, 1 // Add 1
str wi, [sp, x] /] X++
adr x0, result // printf format string
bl printf // Result is in w1
mov w0, wWzr

® 1dp fp, 1r, [sp], FRAME // Delete stack frame
ret

Listing 11-3: A program to increment an integer, in assembly language

We see another assembler directive, .equ, in Listing 11-3. The format is:

.equ symbol, expression

The expression must evaluate to an integer, and the assembler sets symbol
equal to that value. You can then use the symbol in your code, making it
much easier to read, and the assembler will plug in the value of the expres-
sion. The expression is often just an integer. For example, I have equated
the symbol FRAME to the integer 32 @. This allows us to write code that is self-
documenting @. I've also used the assembler names, fp and 1r, for the regis-
ter names x29 and x30, respectively.
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Note that we don’t need to specify the .text segment for the .rodata
section ®. The assembler and linker produce a .rodata section, and it’s up
to the operating system to determine where to load it. I didn’t align the text
strings in the .rodata section either. Although alignment might make the
code execute a little faster, it could waste a few bytes of memory. (Both fac-
tors are irrelevant for the programming we’re doing in this book.) I've also
used adr instead of adrp to load the addresses of the strings. The programs
we’ll be writing in this book are very simple, so I expect the strings in the
.rodata section to be within =1MB of the instructions that use them.

Finally, I've called scanf instead of __isoc99_scanf ®. The _ isoc99_ prefix
disallows several nonstandard conversion specifiers; again, this is beyond the
scope of this book.

Our variable, x, is in the stack frame @. The stack frame is created in the
function prologue @ and deleted in the function epilogue ®, making x an
automatic local variable.

( ™)
YOUR TURN

11.1  You can tell the gcc compiler to optimize the code it generates for
speed with the -Ofast option or for size with the -0s option. Gen-
erate the assembly language for the program in Listing 11-1 for each
option. What are the differences?

11.2  Modify the program in Listing 11-3 so that it inputs two infegers and
then displays the sum and difference of the two.

11.3  Enter the following C code in a file named sum_diff.c:

// Add and subtract two integers.

void sum_diff(int x, int y, int *sum, int *diff)
{

*sum = X + y;

*diff = x - y;
}

Modify the program in Listing 11-3 so that it inputs two integers, calls
sum_diff to compute the sum and difference of the two integers, and
then displays the two results.

What You’ve Learned

Chapter 11

Call stack An area of memory used for storing program data and ad-
dresses that grows and shrinks as needed.

Stack frame Memory on the call stack used for saving the return ad-
dress and caller’s frame pointer, as well as for creating local variables.

Function prologue The instructions that create a stack frame.



Function epilogue The instructions that restore the caller’s link regis-
ter and frame pointer and delete the stack frame.

Automatic local variables Variables created anew each time a function
is called. They can easily be created on the call stack.

Passing arguments to a subfunction Up to eight arguments are passed
in the x0—x7 registers.

Calling a function The branch and link instructions, bl and blr, trans-
fer program flow to a function, storing the return address in x30.

A64 addressing There are several modes for generating a 64-bit ad-
dress with a 32-bit instruction.

Position-independent executable The operating system can load the
program anywhere in memory, and it will execute correctly.

Load-store architecture Instructions can operate only on data that is
in registers.

In the next chapter, we’ll take a brief look at how instructions are coded
in machine language. This will help you understand the reasons for some of
the limitations of instructions, such as the size of offset when referring to a
memory address.
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