
After our thorough overview of the funda-
mentals of the Kotlin programming lan-

guage and the JavaFX graphics tools adapted 
for use in Kotlin, we’re now prepared to tackle 

a series of math problems in the form of mini projects. 
The projects will grow in complexity over the chap-
ter, but they require only high school math skills. Our 
journey will take us from the ancient civilizations of 
Babylon, Greece, and Egypt to the modern-day world 
of cryptography.

The main goal of these projects is to enhance your Kotlin program-
ming skills. We’ll discuss the context and mathematics behind each 
problem in detail, but the heart of each project will be developing an 
appropriate algorithm or problem-solving strategy and then implementing 
it in well-organized code. In doing so, you’ll gain a deeper understanding 

4
S O L V I N G  M A T H E M A T I C A L 

P R O B L E M S  W I T H  C O D E
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of both programming and math, preparing you to solve the more sophisti-
cated problems introduced later in this book.

Project 9: Find the Square Root with the Babylonian Algorithm
We have several methods of finding the square root of a number. In this 
project, I’ll focus on the Babylonian square root algorithm, one of the most 
widely used methods today.

The Babylonian square root algorithm dates back to around 1800 bce. 
It’s believed the Babylonians used it for practical purposes, such as land 
surveying. The algorithm was later refined by the Greeks, who used it to cal-
culate square roots to a high degree of accuracy. The Greek mathematician 
Heron of Alexandria described the algorithm in his work Metrica, written in 
the first century ce.

Despite its ancient origins, the Babylonian square root algorithm 
remains a valuable tool for understanding the history of mathematics and 
the development of numerical methods. The algorithm’s enduring useful-
ness is a testament to the ingenuity of ancient mathematicians and the 
power of mathematical techniques.

T HE OR IGIN OF T HE BA BY LONI A N A LGOR IT HM

The Yale Babylonian Collection, part of the Yale University Library in New 
Haven, Connecticut, houses a Babylonian clay tablet called YBC 7289, which 
contains the earliest known description of the Babylonian square root algorithm . 
This tablet has been a significant object of study for scholars of ancient math-
ematics and the history of science since it was acquired in the early 20th cen-
tury . The Yale Babylonian Collection also includes a number of other important 
artifacts, including cuneiform tablets, cylinder seals, and other objects that pro-
vide insight into the culture, society, and technology of ancient Mesopotamia .

We can use the Babylonian algorithm to approximate the square root 
of a positive number in a few simple and iterative steps. The algorithm 
starts with an initial guess and then refines that guess until it’s close enough 
to the actual square root. Here’s how the algorithm works:

 1. Start with an initial estimate, guess, for the square root of a positive 
number, N. This is customarily set to N / 2.

 2. Check to see if the absolute value of (guess * guess - N) is less than the 
tolerance value. If yes, then terminate the loop and return the esti-
mated square root.

 3. Otherwise, update the guess using the formula guess = (guess + N 
/ guess) / 2.0.

 4. Repeat steps 2 and 3 until the stopping condition is met.
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The Code
The Babylonian algorithm is simple enough that we can write a concise 
code segment to find a square root. However, it’s a good practice to create 
a separate function for a process like this and then call that function from 
main(). This makes the code more reusable and easier to read.

Here’s an example Kotlin function for calculating the square root of a 
positive number using the Babylonian algorithm:

fun babylonianSquareRoot(num: Double): Double {
    val TOL = 0.000001
    var iter = 1
    var guess = num / 2.0

    while(Math.abs(guess * guess - num) > TOL) {
        println("iter: $iter  guess=$guess")
        guess = (guess + num / guess) / 2.0
        iter ++
    }
    return guess
}

This babylonianSquareRoot() function takes a positive double-precision 
number num as its single argument. It sets the tolerance value TOL to 0.000001, 
initializes a variable iter to 1 to track the number of iterations, and makes 
a starting guess of num / 2.0. The function then follows the Babylonian algo-
rithm I described, using a while loop to refine the value of guess until the 
result is within the tolerance. To help visualize the convergence process, the 
intermediate values of iter and guess are printed at each iteration.

To use this function, call it from the main() function and provide the 
value of the number you want to find the square root of, like so:

fun main() {
    println("\n*** Finding Square Root Using Babylonian Algorithm ***\n")
    println("Enter a number (>=1) to find its square root:")
    val num = readln().toDouble()
    println("You have entered: $num\n")
    val squareRoot = babylonianSquareRoot(num)
    println("\nThe estimated square root of $num is: $squareRoot\n")
}

In this case, the user is asked to enter the value of a positive number, 
which is read as a string and converted into a number of type Double before 
its square root is estimated. We’re assuming that the user will enter a valid 
number, which is greater than or equal to 1. If the user enters characters 
that cannot be converted into a number of type Double, the program is 
terminated with an error message. Also, if the user enters a valid negative 
number, the algorithm will not converge to a real solution.

In Chapter 1, you learned how to handle such errors or exceptions. 
Feel free to experiment with this code and to make it error-proof by using a 
try...catch block.
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The Result
Without further ado, let’s try running the algorithm! If N is set to 25, the 
code should output the following:

*** Finding Square Root Using Babylonian Algorithm ***

Enter a number (>=1) to find its square root:
25
You have entered: 25.0

iter: 1  guess=12.5
iter: 2  guess=7.25
iter: 3  guess=5.349137931034482
iter: 4  guess=5.011394106532552
iter: 5  guess=5.000012953048684

The estimated square root of 25.0 is: 5.000000000016778

Of course, the exact value of the square root of 25 is 5. The Babylonian 
algorithm, like any other numerical algorithm, provides only an approxi-
mation. The accuracy of this approximation is determined by the value of 
tolerance (TOL), which can be adjusted to make the approximation more or 
less precise.

Keep in mind that a more accurate square root approximation will take 
longer to compute since the algorithm needs to go through more iterations. 
This sort of trade-off between accuracy and computational time is common.

Project 10: Create Pythagorean Triples with Euclid’s Formula
Pythagoras was a Greek philosopher and mathematician who lived in the 
sixth century bce. He believed in the idea of a harmonious universe and 
saw numbers, mathematics, and geometry as key elements in revealing 
the universe’s mysteries. He’s best known for the Pythagorean theorem, 
which states that in a right-angled triangle, the square of the length of the 
hypotenuse is equal to the sum of the squares of the other two sides (see 
Figure 4-1). Perhaps you’ve seen this theorem summarized as a2 + b2 = c2.

Pythagorean triples are sets of three positive integers (a, b, c) that satisfy 
the Pythagorean theorem. A familiar example is (3, 4, 5): 32 + 42 equals 
9 + 16, which equals 25, or 52. Pythagorean triples are used in many areas 
of mathematics, science, and engineering, including geometry, number 
theory, cryptography, physics, and computer graphics. Throughout history, 
mathematicians have come up with different ways of generating Pythagorean 
triples. In this project, we’ll check out one of the earliest methods, Euclid’s 
formula, and use it to create Pythagorean triples. Here are the steps involved:

 1. Choose an arbitrary positive integer k.

 2. Choose a pair of positive integers m and n, such that m > n > 0.

 3. Calculate a = k(m2 – n2), b = 2kmn, and c = k(m2 + n2).

 4. The values a, b, and c form a Pythagorean triple (a, b, c).
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 ΔABC = Right-angled triangle 
 a, b = Sides adjacent to the right angle 

 c = Hypotenuse

b

90°

a

B

C

c

A

Figure 4-1: The Pythagorean theorem

A Pythagorean triple is considered primitive if its members are all 
coprime, meaning they share no common factors other than 1. For exam-
ple, (3, 4, 5) and (6, 8, 10) are both Pythagorean triples, but only (3, 4, 5) 
is primitive, since 6, 8, and 10 have a common factor of 2. Euclid’s formula 
will generate a primitive Pythagorean triple if and only if the two integers m 
and n are coprime, and one of them is even. If both m and n are odd, then 
the values of a, b, and c will all be even, and the triple won’t be primitive. 
However, as long as m and n are coprime, dividing the values of a, b, and c 
by 2 will result in a primitive Pythagorean triple.

The Code
Here’s a Kotlin function that generates a Pythagorean triple using Euclid’s 
formula:

fun generatePythagoreanTriple(m: Int, n: Int):
    Triple<Int, Int, Int> {
    val a = m * m - n * n
    val b = 2 * m * n
    val c = m * m + n * n
    return Triple(a, b, c)
}

The function takes in two integers m and n, then uses them to calculate 
and return a, b, and c. By not explicitly including a value for k here, we’re 
implicitly assuming k = 1.

We can call this function repeatedly from the main() function, using a 
for loop to generate Pythagorean triples for an arbitrary number of pairs of 
successive integers, as shown in the following code:

fun main() {
    var m = 2               // value of m
    var n = 1               // value of n
    val numTriples = 10     // number of triples
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    println("\n*** Pythagorean Triples Using Euclid's Formula ***\n")
    println("Number of Pythagorean triples: $numTriples\n")

    // Generate the first "numTriples" triples.
    for (i in 1..numTriples) {
        val pythagoreanTriple =
            generatePythagoreanTriple(m, n)
        print("i=${"%2d".format(i)}    " +
              "m=${"%2d".format(m)}    n=${"%2d".format(n)}  ")
        println("Pythagorean triple: $pythagoreanTriple")
        n++
        m++
    }
}

Notice that the first triple is generated using an m of 2 and an n of 1. 
These are the smallest possible values of m and n. (Recall the stipulation in 
Euclid’s formula that m and n must be positive integers such that m > n > 0.) 
These values are passed on as arguments to the generatePythagoreanTriple() 
function, which returns the elements of the Pythagorean triple as a Triple 
object in Kotlin. Successive inputs are generated by incrementing both m 
and n inside the for loop that repeats numTriples times. Since m and n are con-
secutive, one of them will always be even, and they can’t possibly share any 
factors, so every triple will be primitive.

The Result
If you don’t change any of the program parameters, the program will pro-
duce the following output that shows the first 10 Pythagorean triples:

*** Pythagorean Triples Using Euclid's Formula ***

Number of Pythagorean triples: 10

i= 1    m= 2    n= 1  Pythagorean triple: (3, 4, 5)
i= 2    m= 3    n= 2  Pythagorean triple: (5, 12, 13)
i= 3    m= 4    n= 3  Pythagorean triple: (7, 24, 25)
i= 4    m= 5    n= 4  Pythagorean triple: (9, 40, 41)
i= 5    m= 6    n= 5  Pythagorean triple: (11, 60, 61)
i= 6    m= 7    n= 6  Pythagorean triple: (13, 84, 85)
i= 7    m= 8    n= 7  Pythagorean triple: (15, 112, 113)
i= 8    m= 9    n= 8  Pythagorean triple: (17, 144, 145)
i= 9    m=10    n= 9  Pythagorean triple: (19, 180, 181)
i=10    m=11    n=10  Pythagorean triple: (21, 220, 221)

In this example, the starting values of m and n were hardcoded in the 
main() function. You might modify the code to allow the user to input val-
ues of m and n (ensuring m > n > 0). That would allow the user to generate a 
wider range of Pythagorean triples based on their requirements.
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Project 11: Identify Prime Numbers with the Sieve of Eratosthenes
Eratosthenes was an ancient Greek scholar who lived in the third century 
bce. He was an accomplished mathematician, astronomer, geographer, and 
poet. In this project, we’ll explore one of Eratosthenes’s many mathemati-
cal discoveries: the sieve of Eratosthenes, an intuitive algorithm for identify-
ing all the prime numbers up to a given limit. (We’ll explore another of 
his ingenious discoveries in the next project.) It’s remarkable to think that 
Eratosthenes conceived this strategy more than two millennia ago, during 
a time when few individuals could read or write, let alone think about algo-
rithms and solve abstract mathematical problems.

W H AT IS A PR IME NUMBER?

A prime number is a positive integer greater than 1 that has no positive integer 
divisors other than 1 and itself . In other words, the number can be divided 
evenly only by 1 and itself . For example, 5 is a prime number because it can 
be divided evenly only by 1 and 5 . It has no other positive integer divisors . On 
the other hand, 6 isn’t a prime number, because it can be divided evenly by 1, 
2, 3, and 6 . Instead, we call it a composite number . The first several prime num-
bers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, and so on . Prime numbers 
have many interesting properties and play a central role in number theory and 
cryptography, among other fields .

The Strategy
To sieve for primes like Eratosthenes, start by creating a list of all integers 
from 2 up to some limit. Then, starting from 2, iteratively mark off all mul-
tiples of each prime number as composite. The unmarked numbers that 
remain at the end of the process are all prime numbers. Here are the steps 
to implement this algorithm:

 1. Create a list of consecutive integers from 2 through the given limit.

 2. Starting with 2 (the first prime number), mark all its multiples as 
composite.

 3. Find the next number in the list that isn’t marked as composite. This 
will be the next prime number.

 4. Mark all multiples of the prime number found in step 3 as composite.

 5. Repeat steps 3 and 4 until the square of the next prime number 
exceeds the given limit.

 6. The unmarked numbers in the list are all prime numbers.
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We can optimize the sieve algorithm by marking multiples of each 
prime number, starting from its square. For example, when marking multi-
ples of 3, we can start at 32 = 9, since all multiples of 3 less than 9 will already 
have been marked as composite. In this case, 6 will have been marked while 
going through the multiples of 2. Similarly, when we get to multiples of 5, 
we can skip 10, 15, and 20 as being multiples of either 2 or 3 and start mark-
ing off composites from 25.

The Code
As before, we’ll start by writing a function to implement the algorithm and 
then use the main() function to call this function and list the prime num-
bers. Here’s the Kotlin code for the sieveOfEratosthenes() function:

fun sieveOfEratosthenes(n: Int): List<Int> {
    // Create a Boolean array with all values set to true.
    val primes = BooleanArray(n + 1) { true }
    // Create a mutable list of integers to save prime numbers.
    val primeNumbers = mutableListOf<Int>()

    // Set 0 and 1 to not be prime.
    primes[0] = false
    primes[1] = false

    // Iterate over all numbers until i^2 > N.
    var i = 2
  1 while (i*i <= n) {
        // If i is prime, mark all multiples of i as not prime.
      2 if (primes[i]) {
          3 for (j in i * i..n step i) {
                primes[j] = false
            }
        }
        i++
    }

    // Collect all prime numbers into a list and return it.
  4 for ((index, value) in primes.withIndex())
        if (value) primeNumbers.add(index)

  5 return primeNumbers
}

The sieveOfEratosthenes() function takes an integer n as input and returns 
a list of prime numbers up to n. For that, the function creates a Boolean array 
primes with a length of n + 1 and initializes each element’s value to true. Over 
the course of the function, we’ll change elements to false if their indices 
aren’t prime. The function also creates a mutable list primeNumbers of type Int 
to save the prime numbers.
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To begin, we set the first two values of the primes array to false because 
0 and 1 aren’t prime. We then iterate over the numbers from 2 to the square 
root of n (we do this by ensuring i*i <= n) 1. For each number i in this 
range, if i is marked as prime (that is, true) in the primes array 2, the func-
tion marks all multiples of i in the primes array as composite (false). To 
reach all the multiples of i, we use a for loop with a step size of i 3.

To collect the prime numbers, we use a for loop 4 to go over all primes 
elements and add the corresponding index to primeNumbers when the value 
of the element is true. Finally, we return the prime numbers to main() as a 
list of integers for postprocessing 5.

Now that our sieving function is good to go, we can use the main() func-
tion to retrieve a list of prime numbers up to n and print it out. We’ll also 
create a printPrimes() helper function to manage the printing.

fun main() {
    println("\n*** Find All Prime Numbers Up to 'n' ***\n")
    println("Enter a number > 2 to generate the list of primes:")
    val num = readln().toInt()
    println("You have entered: $num")

    val primeNumbers = sieveOfEratosthenes(num)
    println("\nThe prime numbers <= $num are:")
    printPrimes(primeNumbers)
}

fun printPrimes(primeNumbers: List<Int>) {
    for (i in primeNumbers .indices) {
        if (i != 0 && i % 6 == 0) println()
        print("${"%8d".format(primeNumbers[i])} ")
    }
}

The main() function is similar to the one we used for the Babylonian 
square root algorithm in Project 9. It takes a user input for the limit num, 
uses it to create a list of prime numbers with the sieveOfEratosthenes() func-
tion, and then calls printPrimes() to print the list. To make the output look 
nice, printPrimes() organizes the numbers into rows of six and uses string 
formatting to create neatly aligned columns.

The Result
Here’s a look at the program output up to an arbitrary limit num of 251:

*** Find All Prime Numbers Up to 'n' ***

Enter a number > 2 to generate the list of primes:
251
You have entered: 251
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The prime numbers <= 251 are:
       2        3        5        7       11       13
      17       19       23       29       31       37
      41       43       47       53       59       61
      67       71       73       79       83       89
      97      101      103      107      109      113
     127      131      137      139      149      151
     157      163      167      173      179      181
     191      193      197      199      211      223
     227      229      233      239      241      251

Other methods for generating prime numbers include the sieve of 
Sundaram, the sieve of Atkin, and trial division. I encourage you to do some 
online research and experiment with these methods to enhance your Kotlin 
coding skills and gain additional insight into prime number generation.

Project 12: Calculate Earth’s Circumference the Ancient Way
One of Eratosthenes’s most famous achievements was calculating Earth’s 
circumference. He accomplished this by measuring the angle of the sun’s 
rays at noon on the summer solstice at two locations, Alexandria and 
Syene (modern-day Aswan), which were known to be on the same merid-
ian, or longitude. Figure 4-2 shows an abstraction of some of the geometry 
involved in this brilliant experiment.

C

Ray 1Ray 2
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B
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θ

θ2
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1
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Figure 4-2: Measuring Earth’s circumference

In this diagram, we can think of points E and B as two locations on 
Earth’s surface (for example, Alexandria and Syene). We’ll assume for the 
sake of simplicity that Earth is a perfect sphere and that both of these loca-
tions are on the same meridian. Let’s also assume that AB and DE are two 
tall poles or towers that are sufficiently far apart that when extended to 
Earth’s center (C), they create a small but measurable angle α. Two paral-
lel rays coming from the sun just miss the tops of the poles and will hit 
the ground at slightly different angles. Because Earth’s surface is curved, 
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the angle θ2 between ray 2 and DE will be slightly greater than the angle θ1 
between ray 1 and AB. As a result, the shadow of DE on the ground will be 
longer than that of AB, even if the poles themselves have the same height.

We also assume that at both locations the poles are positioned vertically 
relative to the ground surface, which can be thought of as flat in the vicin-
ity of the poles. This last assumption allows us to measure the angle of a ray 
of light relative to a pole. Assuming that the length of the shadow is s and 
the height of the pole is h, the angle θ between the ray and the pole can be 
expressed as follows:

 θ  = tan–1(s
h) (4.1)

Finally, consider triangle ACF in Figure 4-2. According to the exterior 
angle theorem, the triangle’s exterior angle AFE must be equal to the sum of 
the two interior opposite angles, ACF and CAF. Meanwhile, AFE and θ2 are 
equal because these are the alternate interior angles of the line DF that inter-
sects the two parallel solar rays. Therefore, the following must be true:

 ∠AFE = ∠ACF + ∠CAF

 θ2 = θ1 + α

Rearranging the latter, we get:

 α = θ2 – θ1 (4.2)

This final equation is what we need to estimate Earth’s circumference. 
We’ll achieve that by using another geometric relationship that connects 
the length d of an arc of a circle to the angle α (in radians) that the arc cre-
ates at the center of the circle:

  = 2π
Circumferenced

α

Solving for the circumference gives us this equation:

  = 2πd
αCircumference  (4.3)

What Eratosthenes did was quite ingenious. He knew that at noon on 
the summer solstice, the sun would be directly overhead at Syene (point B 
in Figure 4-2), so a vertical pole there would cast no shadow, meaning θ1 = 0, 
and therefore α = θ2 per Equation 4.2. In Alexandria (point E), however, the 
sun would be at an angle, so a pole would cast a shadow on the ground. By 
measuring the length of this shadow, Eratosthenes was able to calculate the 
angle between the sun’s ray (ray 2) and the pole (DE) using Equation 4.1. 
He found this angle to be about 7.2 degrees, or 0.12566370614 radians.

Eratosthenes was aware of the distance between Alexandria and Syene—
he estimated it to be 5,000 stadia (about 800 kilometers). With this informa-
tion and the angle of the shadow, he calculated Earth’s circumference (using 
Equation 4.3) and arrived at a value of approximately 40,000 kilometers. Once 
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he determined the circumference, he could also calculate Earth’s radius. For 
any circle, the radius r can be calculated from the circumference as:

 
2π

Circumferencer = 

Filling in the circumference formula from Equation 4.3, Earth’s radius R is:

 R = α
d (4.4)

This calculation gave Eratosthenes a value of 6,370 kilometers, which is 
remarkably close to the actual value of approximately 6,371 kilometers.

The Code
Let’s write some code to imitate the method Eratosthenes used to calculate 
Earth’s circumference and radius. We’ll make our program more flexible 
by allowing the sun to not be directly overhead at the first location. To do 
this, we’ll use Equation 4.1 to figure out the shadow angles, Equation 4.2 to 
get the arc angle, Equation 4.3 to calculate the circumference, and finally, 
Equation 4.4 to calculate the radius.

import kotlin.math.atan

data class Earth(
    val alpha: Double,
    val circumference: Int,
    val radius: Int
)

fun calculateEarthMetrics(s1: Double, h1: Double,
                          s2: Double, h2: Double, d: Double): Earth {
    // Calculate the angles of the shadows.
    val theta1 = atan(s1 / h1)
    val theta2 = atan(s2 / h2)

    // Calculate the angle at the center of Earth.
    val alpha = theta2 - theta1

    // Calculate the circumference and radius.
    val circumference = (2 * Math.PI * d / alpha).toInt()
    val radius = (d / alpha).toInt()

    return Earth(alpha, circumference, radius)
}

fun main() {
    // known values
    val shadow1 = 0.0    // m
    val height1 = 7.0    // m
    val shadow2 = 0.884  // m
    val height2 = 7.0    // m
    val distanceBetweenCities = 800.0 // in km
    val (alpha, circumference, radius) =
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        calculateEarthMetrics(s1=shadow1, h1=height1,
            s2=shadow2, h2=height2,
            d=distanceBetweenCities)

    // Output the estimated circumference and radius.
    println("\n*** Measuring Earth's Circumference and Radius ***\n")
    println("Angle (alpha): ${"%7.5f".format(alpha)} radian")
    println("Circumference: $circumference kilometers")
    println("Radius: $radius kilometers")
}

The code segment starts by importing the required math function 
and defining a data class Earth with three properties: alpha, circumference, 
and radius. This data class allows us to conveniently package up the values 
estimated inside the calculateEarthMetrics() function and return them via a 
single Earth object.

The calculateEarthMetrics() function has five named parameters that 
represent the shadow lengths (s1 and s2) and heights (h1 and h2) for the two 
locations, and the distance (d) between these two locations. Then the func-
tion follows the steps described on page 137: calculating theta1 and theta2, 
using them to calculate alpha, and using alpha to estimate circumference and 
radius. Since these are large numbers (when expressed in kilometers), we 
convert both circumference and radius into integers (which is how they were 
defined in the Earth class).

The main() function’s job is quite simple: call the calculateEarthMetrics() 
function; receive the values of alpha, circumference, and radius by deconstruct-
ing the returned object; and print them with appropriate annotations and 
format.

The Result
For the given parameter values in this example—the same ones Eratosthenes 
used—the output of our program looks like this:

*** Measuring Earth's Circumference and Radius ***

Angle (alpha): 0.12562 radian
Circumference: 40013 kilometers
Radius: 6368 kilometers

Feel free to use this tool to experiment with different parameter values. 
For example, you could try using shadow lengths and angles measured on 
an exoplanet and find out how large or small the planet is!

Project 13: Code the Fibonacci Sequence
Leonardo of Pisa, commonly known as Fibonacci, was an Italian math-
ematician born c. 1170. From an early age, he showed a keen interest in 
mathematics, and his travels to North Africa and the Middle East exposed 
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him to advanced mathematical concepts that weren’t yet known in Europe. 
Fibonacci’s most significant contribution to mathematics was the intro-
duction of the Indo-Arabic numeral system to the Western world, which 
included the use of zero. This system replaced the previously used Roman 
numerals and revolutionized arithmetic calculations, making them signifi-
cantly more efficient.

Fibonacci is widely recognized for introducing the Fibonacci sequence, 
a series of numbers where each number is the sum of the two preceding 
numbers. To explain this concept in his book Liber Abaci, Fibonacci used a 
colorful analogy involving a pair of rabbits. Imagine placing a pair of rabbits 
in an enclosed area. The rabbits can mate when they’re one month old and 
can produce a new pair of rabbits when they’re two months old. Therefore, 
it takes one month for each new pair to mature and an additional month to 
give birth to a new pair. If the rabbits never die and the mating continues, 
how many pairs of rabbits will there be after each month?

The solution to this problem forms the Fibonacci sequence. If we 
start with (1, 1) representing the starting pair over the first two months, 
the sequence will look like this: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, and so on. 
These numbers can be linked to Fibonacci’s rabbit example as explained 
in Table 4-1.

Table 4-1: Fibonacci’s Rabbits

Month
Young 
pairs

Mature 
pairs

Total 
pairs Explanation

0 1 0 1 Start with a newborn pair, no mature pair, and no offspring .

1 0 1 1 The first pair becomes mature and will reproduce at the end of 
this period .

2 1 1 2 The first pair of offspring is born . One mature pair will reproduce 
again at the end of this period .

3 1 2 3 The second pair of offspring is born . Two mature pairs will  
reproduce at the end of this period .

4 2 3 5 Two new pairs are born . Three mature pairs will reproduce at  
the end of this period .

5 3 5 8 Three new pairs are born . Five mature pairs will reproduce at  
the end of this period .

Say we want to determine how many rabbit pairs will exist after a cer-
tain number of generations. Here are the steps we can take, using the 
Fibonacci sequence:

 1. Set the first two numbers in the sequence. By convention, these are usu-
ally 0 and 1 rather than 1 and 1.

 2. Add the first two numbers to get the third number in the sequence.

 3. Generate the next number by adding the two preceding numbers. This 
step can be mathematically expressed as Fn = Fn – 1 + Fn – 2, where n ≥ 2.

 4. Repeat step 3 until the stopping condition is met.

Kotlin for the Curious (Sample Chapter) © 10/30/24 by Faisal Islam



Solving Mathematical Problems with Code   141

The Fibonacci sequence has become a classic example of recursive 
sequences and is used to illustrate many mathematical concepts in various 
fields. Before getting into how to code this sequence, I’ll introduce you to 
two other related concepts: the golden ratio and the Fibonacci spiral. These 
concepts will be illustrated in our Fibonacci code.

The Golden Ratio
The golden ratio, also known as the golden mean, is a mathematical ratio 
commonly found in nature, art, and architecture. The ratio is approxi-
mately 1.61803398875 and is denoted by the Greek letter φ.

The golden ratio is linked to the Fibonacci sequence: as the sequence 
continues, the ratio between each successive pair of numbers approaches 
the golden ratio. Starting with 1 (we can’t start with 0, as the ratio of 1 over 0 
is infinity), if we calculate and plot this ratio for each successive pair, it will 
rapidly converge on φ, as shown in Figure 4-3.
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Figure 4-3: Convergence to the golden ratio

Well-known manifestations of the golden ratio in nature include nau-
tilus shells, the arrangements of seeds in a sunflower and scales on a pine 
cone, and the proportions of the human body (for example, the ratio of the 
length of the forearm to the hand, and the ratio of the overall height to the 
height of the navel). The ratio has also been extensively exploited by artists, 
musicians, photographers, product designers, and architects in their work. 
In architecture, for example, it might determine the ratio of width to height 
for a building’s facade.

The Fibonacci Spiral
The Fibonacci spiral is a geometric pattern derived from the Fibonacci 
sequence. It’s created by drawing a series of quarter circles inside squares 
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that are based on the numbers in the Fibonacci sequence. To draw the 
Fibonacci spiral, follow these steps:

 1. Draw a small square with a side length of 1.

 2. Draw another square of side length 1 adjacent to the first square, shar-
ing a side.

 3. Draw a third square of side length 2 adjacent to the second square, 
sharing a side.

 4. Draw a fourth square of side length 3 adjacent to the third square, shar-
ing a side.

 5. Continue this process, drawing squares with side lengths equal to the 
sum of the two preceding squares, adjacent to the last drawn square, 
sharing a side.

 6. Draw a quarter circle inside each of the squares, connecting the oppo-
site corners of each square. The quarter circles will form a smooth 
curve: the Fibonacci spiral.

If you follow these steps and draw the spiral for the first eight numbers 
(starting from 1), the result will look like Figure 4-4.
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Figure 4-4: A Fibonacci spiral for the first eight numbers

The Fibonacci spiral, often associated with the golden ratio, is a recur-
ring pattern in nature, appearing in various forms such as seashells, leaf 
arrangements, and even the spirals of distant galaxies! While the golden 
ratio is not an absolute prerequisite for beauty or efficiency in design, it 
undeniably holds an enduring charm as a mathematical concept that con-
tinues to capture our imagination.
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The Code
Generating and printing the Fibonacci sequence up to a certain limit 
can be accomplished with just a few lines of code. Let’s take this project a 
step further: along with generating the sequence itself, we’ll also draw the 
Fibonacci spiral. This way, we’ll be able to practice some of the data visu-
alization techniques covered in the previous chapter and anticipate future 
projects where we’ll gain deeper insight into a problem by visualizing the 
program output.

Setting Up

To begin, we’ll write the global components of the code, including the 
import block needed for the visualization, the FibonacciSpiral application 
class, and the main() function.

import javafx.application.Application
import javafx.scene.Scene
import javafx.scene.canvas.Canvas
import javafx.scene.canvas.GraphicsContext
import javafx.scene.layout.Pane
import javafx .scene .paint .Color
import javafx.scene.shape.ArcType
import javafx.scene.text.Font
import javafx.stage.Stage

// number of Fibonacci numbers in the list
val N = 9
val fibs = mutableListOf<Int>()

// canvas-related parameters
val canvasW = 1000.0
val canvasH = 750.0

// Scaling parameters: adjust as needed.
val xOffset = 150
val yOffset = 50
val amplify = 25.0

class FibonacciSpiral : Application() {
    override fun start(stage: Stage) {
        val root = Pane()
        val canvas = Canvas(canvasW, canvasH)
        val gc = canvas.graphicsContext2D
        gc.translate(canvas.width / 2 + xOffset,
            canvas.height / 2 + yOffset)
        root.children.add(canvas)

        val scene1 = Scene(root, canvasW, canvasH)
        scene1.fill = Color.WHITE
        with(stage) {
            title = "Fibonacci Spiral"
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            scene = scene1
            show()
        }

        // code for Fibonacci sequence and spiral
        generateFibonacciNumbers()
        drawFibonacciSpiral(gc)
        printFibonacciSequenceAndRatios()
    }
}

fun main() {
    Application.launch(FibonacciSpiral::class.java)
}

The code segment starts with an import block that provides access to a 
number of JavaFX graphics features that we’ll use to draw the Fibonacci spi-
ral on a canvas object. See Chapter 3 for a review of these features. Coding 
in IntelliJ IDEA means you don’t need to memorize which library features 
you need to import; as you use the default template and add code that may 
require additional graphics elements, the IDE will import those features 
automatically.

Following the import block, we set up some global parameters. First, 
we create a variable called N to set how far into the Fibonacci sequence 
we’ll go (starting from 0). Then, we create a mutable list of type Int named 
fibs, which will store the Fibonacci sequence as we calculate it. We also set 
several parameters to create a canvas where we’ll draw the Fibonacci spiral. 
To define the size of the canvas, we use the values canvasW and canvasH, and 
to set the starting location of the origin of the coordinate system, we use 
xOffset and yOffset. For this particular project, I’ve set the canvas size to 
1,000 pixels wide and 750 pixels high, which should be suitable for most 
screen sizes and resolutions.

It’s important to note that the length of a line or the side of a rectangle 
on the canvas is measured in pixels. To plot the Fibonacci spiral, we’ll start 
with a square of size 1. However, drawing a square of 1 pixel would result 
in a tiny dot on the screen, which we don’t want. To avoid this, we’ll use 
an amplification factor called amplify and set it to 25. Therefore, the first 
square will be 25 pixels in size, and all subsequent squares will be amplified 
by the same factor. This ensures that the end result is a Fibonacci spiral that 
fills the canvas nicely.

In the FibonacciSpiral application class, we first create a layout container 
called root of type Pane(), which is the most basic layout container in JavaFX 
to hold and position nodes (user interface components) in a scene. We use 
root to hold the canvas on which the spiral will be drawn. Notice how we use 
the translate property of the graphics context gc to shift the initial position 
of the origin from the top-left corner (the default) to a position offset a bit 
from the middle of the canvas, where we’ll draw the first Fibonacci square 
(see Figure 4-4 to get a sense of where that is). The rest of the class is rou-
tine JavaFX: we assign canvas to root, which is assigned to scene1, which con-
nects to stage, the primary display window for this application.
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Next, we move to the problem-specific segment of the application class, 
which consists of calls to three separate functions: generateFibonacciNumbers(), 
drawFibonacciSpiral(), and printFibonacciSequenceAndRatios(). These functions 
do exactly what their names suggest, and we’ll discuss them in detail shortly.

Finally, the main() function contains a single line of code that launches 
a JavaFX application by calling the launch() method of the Application class, 
passing it the FibonacciSpiral class as an argument.

Generating the Fibonacci Sequence

The generateFibonacciNumbers() function generates the Fibonacci sequence as 
discussed earlier.

fun generateFibonacciNumbers() {
    // Add the starting pair.
    fibs.add(0)
    fibs.add(1)

    // Generate the sequence.
    for (i in 2 until N) {
        fibs.add(fibs[i-1] + fibs[i-2])
    }
}

First, F(0) and F(1) are set to 0 and 1, respectively, and then the rest of 
the sequence is generated using Fn = Fn – 1 + Fn – 2, where n ≥ 2. We add all 
generated numbers to the mutable list fibs using its fibs.add() method.

Drawing the Fibonacci Spiral

The drawFibonacciSpiral() function drives the process of drawing the Fibonacci 
spiral using the generated sequence of Fibonacci numbers, with support from 
two other helper functions that label each square with its corresponding 
Fibonacci number and draw the quarter circles.

fun drawFibonacciSpiral(gc: GraphicsContext) {
    for (i in 1 until N) {
      1 val side = fibs[i] * amplify
      2 with(gc) {
            strokeRect(0.0, 0.0, side, side)
            drawText(i, gc, side)
            drawArc(gc, side)
            // Move to the opposite corner by adding
            // side to both x- and y-coordinates.
            translate(side, side)
            // Rotate the axes counterclockwise.
            rotate(-90.0)
        }
    }
}
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fun drawText(i: Int, gc: GraphicsContext, side: Double) {
    gc.fill = Color.BLACK
    with(gc) {
      3 font = when {
            i <= 2 -> Font.font(12.0)
            else -> Font.font(24.0)
        }
        fillText(fibs[i].toString(), side/2, side/2)
    }
}

fun drawArc(gc: GraphicsContext, side: Double) {
    val x = 0.0
    val y = -side
    with(gc) {
        lineWidth = 3.0
        strokeArc(x, y, 2*side, 2*side,
            -90.0, -90.0, ArcType.OPEN)
    }
}

The drawFibonacciSpiral() function uses a for loop that starts with 1 (we 
cannot draw a square of size 0) to iterate over the sequence of numbers. 
In the loop, we retrieve the current number and multiply it by amplify to 
properly scale the squares on the screen 1. Then we implement the rest of 
the process inside a with(gc) block 2 where we draw a square, annotate it, 
and draw an arc. At the end of each cycle, we move the canvas’s origin to 
the next location and rotate the coordinate system counterclockwise by  
90 degrees. This way, the squares will spiral outward, as shown in Figure 4-4, 
but we’ll still be able to draw each one with the same strokeRect(0.0, 0.0, 
side, side) call.

In the drawText() function, we use the argument i, which represents the 
index of the current Fibonacci number, to set the font size of the text used 
for annotation 3. This ensures that the first two numbers fit inside a square 
of size 25 pixels. We then use the fillText() method of the graphics context 
gc to draw the number in the middle of its corresponding square.

The drawArc() function sets up the parameter values needed by the 
strokeArc() method of the graphics context. These parameters include the 
top-left corner of the rectangle, its width and height, the starting angle with 
respect to the x-axis in degrees, and the length of the arc in degrees. We 
also specify the arc type as OPEN, which means the two endpoints won’t be 
connected with a line.

For drawing the arc, think of the imaginary box inside which the arc will 
be drawn as a stand-alone object that has its own coordinate system whose 
origin is at the center of the box. Inside this box, the positive x-axis points 
east and the positive y-axis points north. (Note that this isn’t the same as the 
default convention used by the JavaFX canvas.) Taking this into account, 
drawing an arc counterclockwise is considered the positive direction, and 
this is how the starting angle and arc length are specified. For example, we’ve 
specified the start angle as –90 degress and the arc length as –90 degrees 
(both in the clockwise direction relative to the positive x-axis). Alternatively, 
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we could have specified the start angle as +180 degress and the arc angle as 
+90 degrees (both counterclockwise) to produce the same result.

Printing the Sequence

We have one more function that prints the Fibonacci sequence, as well as 
the ratios between successive terms in the sequence, to illustrate how these 
values converge on the golden ratio.

private fun printFibonacciSequenceAndRatios() {
    println("\n*** Fibonacci sequence and ratios ***\n")
    println("Length of Fibonacci sequence=${fibs.size}")
    println("Generated sequence:")
  1 println(fibs)
    println("\nRatio F(n+1)/F(n) [starting from (1,1) pair]:")
    for (i in 2 until fibs.size) {
        println("%5d".format(fibs[i-1]) +
                "%5d".format(fibs[i]) +
                "%12.6f".format(fibs[i].toDouble()/fibs[i-1])
        )
    }
}

The function first prints a header message and the length of the gener-
ated Fibonacci sequence. Next, it prints the generated sequence itself using 
println() 1. Finally, a for loop calculates and prints the ratios of adjacent 
numbers in the sequence, using format() to show the values with appropri-
ate spacing and precision.

The Result
When you run the code, the text portion of the output should appear as 
follows:

*** Fibonacci sequence and ratios ***

Length of Fibonacci sequence=9
Generated sequence:
[0, 1, 1, 2, 3, 5, 8, 13, 21]

Ratio F(n+1)/F(n) [starting from (1,1) pair]:
    1    1    1.000000
    1    2    2.000000
    2    3    1.500000
    3    5    1.666667
    5    8    1.600000
    8   13    1.625000
   13   21    1.615385

Notice how the ratios initially zigzag around the value of 1.61803398875 
but quickly approach the golden ratio once we reach the 10th pair in the 
sequence.
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Of course, the app also displays a beautiful Fibonacci spiral drawn on 
the canvas using JavaFX. It should look exactly like Figure 4-4—that figure 
was generated with this very code!

E X ERCISE

A concept related to the Fibonacci sequence and the golden ratio is Pascal’s 
triangle, named after the French mathematician Blaise Pascal (although it was 
known to Chinese mathematicians over 500 years earlier) . It has many interest-
ing properties and applications in mathematics, including its use in calculating 
binomial coefficients, which arise in probability theory and other fields .

Pascal’s triangle starts with a row containing a single number 1 . Each 
subsequent row has one more number than the row above it . Each number is 
determined by adding the adjacent pair of numbers directly above it (except 
for a 1 on either end of each row) . The first seven rows of Pascal’s triangle are 
shown here:

1

2
3 3

4 46
5 51010

15 20 15 66

1
1

1
1

1
1

1
1

1
1

1
1

Try writing the Kotlin code to generate Pascal’s triangle up to some arbi-
trary length (say, 10 rows) . Display the result as text output formatted to look 
like a triangle .

Project 14: Find the Shortest Distance Between Two Locations on Earth
We use the Pythagorean theorem to calculate distances between points on 
the same plane. However, for points on Earth’s surface, this method isn’t 
accurate over long distances, because it doesn’t consider Earth’s curved 
shape. That’s where the haversine formula comes in. It calculates the shortest 
distance between two points on the surface of a sphere using the latitude 
and longitude coordinates of the points. In the case of Earth, the formula 
isn’t totally accurate, since Earth isn’t perfectly spherical, but it still offers a 
reasonable distance approximation for many practical applications, includ-
ing in navigation, astronomy, and geography.

The haversine formula revolves around the concept of a great circle, the 
largest circle that can be drawn on a sphere. It’s formed by the intersection 
of the sphere’s surface with a plane that passes through the sphere’s center. 
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The great circle divides the sphere into two equal halves, and its circumfer-
ence matches the circumference of the sphere itself.

Figure 4-5 showcases two prominent great circles: the equator and 
the prime meridian. The equator acts as a dividing line between the 
northern and southern hemispheres, while the prime meridian (which 
passes through Greenwich, England) separates the Eastern and Western 
Hemispheres on Earth’s surface. These two great circles serve as references 
for latitude and longitude, which together define the locations of points on 
Earth’s surface.

P

Equator

Prime meridian

A

B

C

D

A = Point at the intersection of the 
prime meridian and the equator 

B = Point at the intersection of the 
great circle DB and the equator  

C = Center of Earth 

D = North Pole

ϕ

λ

Figure 4-5: The latitude and longitude of a point P

Latitude measures the distance north or south of the equator. It’s 
expressed in degrees, with the equator being 0 degrees latitude, the North 
Pole 90 degrees north (90°N), and the South Pole 90 degrees south (90°S). 
In Figure 4-5, the latitude of point P would be denoted as φ°N, as it lies 
φ degrees north of the equator along a great circle that intersects with P 
and the North Pole. Longitude measures the distance east or west of the 
prime meridian. The prime meridian itself has a longitude of 0 degrees, 
and longitude values range from –180 degrees west of the prime meridian 
to 180 degrees east of the prime meridian. In the case of point P, its longi-
tude would be λ°E, indicating its great circle is λ degrees east of the prime 
meridian.

N O T E  You may be used to seeing all latitude and longitude values expressed as positive 
numbers, but for the haversine formula to work, southern latitudes and western lon-
gitudes must be negative. Our program will automatically convert coordinates that 
don’t follow this convention.

Given any two points on the surface of a sphere, you can draw a great 
circle that intersects with both points, and that great circle will define the 
shortest path between the two points. If you know the angle θ (in radians) 
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between the points—that is, the angle formed at the sphere’s center by 
the arc connecting the points—and if you know the radius r of the sphere, 
you can calculate the distance along the sphere’s surface between the two 
points as follows:

 d = rθ (4.5)

In the case of Earth, we know the radius R to be about 6,371.009 
kilometers, but how do we know the angle between two points on Earth’s 
surface? This is where the haversine formula comes in. It uses the points’ 
latitude and longitude coordinates, and a bit of trigonometry, to determine 
that angle, which in turn lets us calculate the distance between the points. 
The formula involves a little-known trigonometric function called the 
haversine function. The haversine of an angle θ is defined as follows:

 hav(θ) = sin2(  )2
θ

 (4.6)

The haversine formula calculates a, the haversine of the angle between 
two points on Earth’s surface, as follows:

 a = hav(φ2 – φ1) + cos(φ1) cos(φ2) hav(λ2 – λ1)

Here (φ1, λ1) and (φ2, λ2) are the latitude and longitude coordinates of the 
two points, expressed in radians. To convert from degrees to radians, sim-
ply multiply by π and divide by 180.

We now have the haversine of the angle between the two points, but not 
the angle itself. For that, we can use the a we just calculated and the defini-
tion of haversine (Equation 4.6) to solve for the arc angle c:

 c = 2 sin–1(√a ) 

Now that we have the angle c, we have everything we need to calculate the 
distance between the points using Equation 4.5:

 d = Rc

There’s one catch, however: d works out to a real number only when 
0 ≤ a ≤ 1, but sometimes a can be pushed outside this range due to a floating-
point error. To avoid this, we should instead express c as:

 c = 2 sin–1√max(0.0, min(a, 1.0)) 

This constrains the value of a to a range from 0 to 1, preventing any unreal-
istic results.

The Code
We now have everything we need to write a Kotlin program that calculates 
the shortest distance between two locations on Earth. For this example, I’ve 
hardcoded the locations of two well-known landmarks, Big Ben in London 
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and the Statue of Liberty in New York, but you can use any locations you 
want. The code consists of four main segments: an import block and global 
declarations, the main() function, the printLatLong() function, and the 
haversineDistance() function. I’ll discuss them in the same order.

// Import math functions.
import kotlin.math.sin
import kotlin.math.asin
import kotlin .math .cos
import kotlin.math.PI
import kotlin.math.max
import kotlin.math.min
import kotlin.math.pow
import kotlin.math.sqrt

// Define a Location data class.
data class Location(
    val name: String = "",
    var lat: Double,
    val latDir: String,
    var lon: Double,
    val lonDir: String
)

//  global variables and parameters
//  N = north, S = south, E = east, W = west
val L1 = Location(name = "Big Ben", lat=51.5004,
    latDir = "N", lon=0.12143, lonDir = "W")
val L2 = Location(name="Statue of Liberty", lat = 40.689978,
    latDir = "N", lon = 74.045448, lonDir = "W")
val locations = listOf(L1, L2)

val R = 6371.009  // radius of Earth in km

fun main() {
    println("\n*** Measuring Distance Between Two Locations on Earth ***\n")
    printLatLong(category = "input", locations)
    val d = haversineDistance()
    printLatLong(category = "adjusted", locations)
    println("\nThe distance between the two given locations:")
    println("d = ${"%10.2f".format(d)} km")
}

fun printLatLong(category: String, locationsToPrint: List<Location>) {
    when(category) {
        "input" ->
            println(" . . .inputted coordinates...\n")
        "adjusted" ->
            println("\n...adjusted coordinates...\n")
    }
    locationsToPrint.forEach { location -> println(location)}
}
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fun haversineDistance(): Double {
    // Adjust signs based on N-S and E-W directions.
  1 for (location in locations) {
        with(location) {
            if(latDir == "S" && lat > 0.0) lat = - lat
            if(lonDir == "W" && lon > 0.0) lon = - lon
        }
    }
    // Calculate the angles in radians.
    val phi1 = L1.lat * PI/180
    val phi2 = L2.lat * PI/180
    val delPhi = phi2 - phi1
    val delLambda = (L2.lon - L1.lon) * PI/180

    // Calculate the distance using haversine formula.
  2 val a = sin(delPhi/2).pow(2) +
            cos(phi1) * cos(phi2) *
            sin(delLambda/2).pow(2)
    // Ensure that 0 <= a <= 1 before calculating c.
  3 val c = 2 * asin(sqrt(max(0.0, min(1.0, a))))
  4 val d = R * c
    return d
}

Since the haversine formula needs to use quite a few math functions, we 
begin by importing those from the kotlin.math package. Next, we declare a 
data class Location with five properties: name (the name of the location), lat (the 
latitude), latDir (the direction of the latitude), lon (the longitude), and lonDir 
(the direction of the longitude). We then create two Location objects, L1 and L2, 
representing Big Ben and the Statue of Liberty. We store them together in a 
list called locations so we can efficiently iterate over the locations.

Notice that I’ve provided the latitude and longitude values as positive 
numbers in degrees, regardless of which direction they’re in. I’m relying 
on the latDir and lonDir properties to communicate that extra information. 
The convention is N for north, S for south, E for east, and W for west. In cases 
where the latitude or longitude of a location is exactly 0, the corresponding 
direction can be set to EQ (equator) or PM (prime meridian), although this 
won’t impact the final result. Later, in the haversineDistance() function, we 
ensure that when the lat or lon direction is S or W, respectively, the corre-
sponding values are always negative 1.

The main() function prints the provided latitude and longitude values 
before and after adjustments (if any) using the printLatLong() function, 
makes a single call to the haversineDistance() function, and prints the result.

The printLatLong() function takes one argument, category, which is of 
type String. The category parameter is passed to a when block to determine 
which of two messages to print, indicating whether the coordinates have 
been adjusted for their direction properties. The locations themselves are 
then printed one at a time using the forEach() method of the locationsToPrint 
list. We could have used a regular for loop here, but some Kotlin enthusi-
asts consider forEach() to be more idiomatic.
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Finally, the haversineDistance() function calculates the shortest distance 
between the two locations on a spherical surface. It first iterates over the 
locations and negates the latitudes and longitudes if needed 1, then con-
verts all the latitude and longitude values from degrees to radians. Next, 
it steps through the equations we discussed on page 150, using the coordi-
nates to calculate a 2, using a (constrained to between 0 and 1) to calculate 
the angle c 3, and using c to calculate and return the haversine distance d 
between the points 4.

The Result
When you run the program for the set location and parameter values, the 
output should appear as follows:

*** Measuring Distance Between Two Locations on Earth ***

 . . .inputted coordinates...

Location(name=Big Ben, lat=51.5004, latDir=N, lon=0.12143, lonDir=W)
Location(name=Statue of Liberty, lat=40.689978, latDir=N, lon=74.045448,
lonDir=W)

...adjusted coordinates...

Location(name=Big Ben, lat=51.5004, latDir=N, lon=-0.12143, lonDir=W)
Location(name=Statue of Liberty, lat=40.689978, latDir=N, lon=-74.045448,
lonDir=W)

The distance between the two given locations:
d =   5575.08 km

As mentioned on page 148, the haversine calculation assumes that 
Earth is a perfect sphere, which is not true. In fact, Earth is an oblate spher-
oid, slightly flattened at the poles and bulging at the equator. To get around 
this wrinkle, you could use Vincenty’s formula, which takes into account 
the oblate spheroidal shape of Earth by considering Earth’s equatorial and 
polar diameters. Which formula to use really depends on the nature of the 
problem, as both methods have their strengths and their weaknesses.

E X ERCISE

Every time you fly to a distant location for business or pleasure, you might 
wonder about the minimum flight distance between the departing and arriving 
cities . Now that you know how to calculate the haversine distance, you can find 
the answer if you know the latitude and longitude coordinates of the locations . 
Try finding the shortest distance between the locations listed here . (You can 
look up the coordinates for these locations online; for the last two cases, you 
should already know what they are .)

(continued)
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• Tokyo, Japan, and Sydney, Australia

• Paris, France, and Lima, Peru

• Dublin, Ireland, and Ankara, Turkey

• The North Pole and South Pole

• Two points where the equator and the prime meridian intersect, located on 
opposite sides of the globe

As an added step, use the calculated distances and an average speed of 
air travel to estimate the flight times between these locations .

Project 15: Do Encryption with the Hill Cipher
In today’s interconnected world, we constantly share sensitive data like per-
sonal information, financial details, and confidential messages. What’s to 
stop unauthorized parties from accessing that information? The answer is 
encryption, a set of techniques for scrambling our data into gibberish that 
can be deciphered only with the right key. Encryption protects our privacy, 
safeguards against hackers and cybercriminals, and secures our online 
transactions.

There are a variety of encryption algorithms in use today. In this 
project, we’ll focus on a particular algorithm called the Hill cipher, devel-
oped by American mathematician Lester S. Hill in 1929. According to 
this method, the plaintext (text in plain English or any other language) is 
divided into blocks of fixed size and represented as vectors. These vectors 
are then multiplied by a square matrix called the encryption key, modulo a 
specified number, to obtain the ciphertext (encrypted text). For decryption, 
the ciphertext vectors are multiplied by the inverse of the encryption key 
matrix, modulo the same specified number.

Hill’s encryption method can be vulnerable to attacks if we don’t 
choose the encryption key matrix carefully. While it’s no longer employed 
as the sole encryption mechanism, it can still be incorporated into more 
sophisticated methods and remains a valuable concept to grasp. Plus, 
exploring Hill’s method provides an excellent opportunity to apply and 
enhance our coding skills in the crucial field of cryptography.

How It Works
The Hill cipher revolves around concepts from linear algebra and modulo 
operations. I don’t expect you to have an in-depth knowledge of these areas 
of mathematics, but you may wish to review these topics to gain a better 
insight into how the Hill cipher actually works, as well as its strengths and 
weaknesses. Here are brief definitions of the key terms that we’ll use in this 
project:
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Vector

A one-dimensional sequence of values. For example, [1, 3, 5] is a row 
vector with three elements.

Matrix

A two-dimensional collection of values, arranged in rows and columns. 
For example, a 3×3 matrix has three rows and three columns, and a 
total of nine elements (numbers) that can be real or complex.

Determinant

A single value calculated using the elements of a matrix. The matrix 
must be square, meaning it has the same number of rows and columns. 
Say we have the following square matrix A:

 A = d  e  f 
a  b  c 

g  h  i 
 

Its determinant, denoted by det(A), det A, or |A|, can be calculated as 
follows:

 det(A) = aei + bfg + cdh – ceg – bdi – afh

Identity matrix

A square matrix, often denoted as I, where all the elements along a 
diagonal from the top left to the bottom right have a value of 1 and all 
other elements have a value of 0. A 3×3 identity matrix looks like this:

 I = 0  1  0 
1  0  0 

0  0  1 

Inverse matrix

For a given matrix A, its inverse A–1 is another matrix such that multi-
plying the two matrices results in the identity matrix (that is, AA–1 = I). 
A matrix must be square to have an inverse, although not all square 
matrices have one.

Modulo

An operation represented by the symbol % that finds the remain-
der when one number is divided by another. For example, 5 % 2 is 1. 
Modulo (mod for short) is a multipurpose operator used in various 
applications, such as determining divisibility, cycling through a range 
of values, and handling periodic patterns. Hill’s algorithm relies on the 
modulo operation to keep the encrypted and decrypted texts within 
the same alphabet as the plaintext. Thus, the size of the alphabet serves 
as the base or modulus (the number after the % operator) for these oper-
ations, guaranteeing valid ciphertext and plaintext representations.
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Modular multiplicative inverse (MMI)

For a given integer a and a modulus m, the MMI is positive integer x 
such that ax % m = 1. The value of x must be less than the modulus. For 
example, the MMI for 5 modulo 11 is 9, because (5 * 9) % 11 = 1, and 
9 is less than 11.

Armed with these definitions, let’s now dive into the core encryption 
and decryption steps employed by the Hill cipher and highlight some of our 
Kotlin implementation.

For Encryption

 1. Define the alphabet. Choose which letters are to be used for writ-
ing plain and encrypted messages. For messages written in English, 
the alphabet size should be at least 26 to include all lowercase letters. 
We’ll also include a period, a space, and a question mark, giving us an 
alphabet of 29 characters total. The size of the alphabet serves as the 
modulus.

 2. Choose a block size. During encryption and decryption, the message is 
divided into small blocks of characters, each of the same length. In this 
exercise, we’ll have three characters per block.

 3. Generate the encryption key matrix. For the purposes of this project, 
I’ve generated the encryption key matrix for you, but if you’re curious, 
it must adhere to these rules:

a. The matrix must be square and have the same dimension as the 
block size chosen in step 2. In this case, with a block size of 3, we 
need a 3×3 matrix.

b. The determinant of the matrix can’t be 0.

c. The determinant must not share a factor, other than 1, with the 
modulus from step 1.

 4. Prepare the plaintext. Divide the plaintext message into blocks based 
on the chosen block size. If the last block is smaller than the fixed size, 
pad it with filler characters. We’ll use spaces for padding to ensure that 
the message remains the same after decryption, with no extra visible 
characters.

 5. Create vectors from the plaintext. Each block of the plaintext must be 
converted into a numerical vector with the same length as the block 
size. To assign numerical values to characters, we’ll save the alphabet 
in a single String object. We can then map each character in the plain-
text to that character’s corresponding index in the string. For example, 
a will be mapped to 0, b to 1, and so on. This way, the block cab will 
become (2, 0, 1), a vector of size 3.

 6. Encrypt the message. For each block, carry out the following steps:

a. Multiply the block’s plaintext vector by the key matrix, modulo 29, 
to generate a ciphertext vector.
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b. Convert the numerical values in the ciphertext vector back to text 
characters using the reverse mapping scheme.

c. Add the ciphered characters to a mutable list of characters, which 
will become the encrypted message (ciphertext) once all the blocks 
have been processed.

For Decryption

 1. Generate the decryption key matrix. To decipher the encrypted text, 
we must first create the inverse of the encryption key matrix modulo 
the specified number. This process involves multiple linear algebraic 
steps and modulo operations; for simplicity, I’ve provided the inverse 
matrix. If you want to work with a different set of key and inverse matri-
ces, you can look up the online tools that will generate those for you.

 2. Prepare the ciphertext. Divide the ciphertext into blocks of the speci-
fied size used during encryption (3 for this project). This time, no pad-
ding is needed, since the padding was already done during encryption.

 3. Create vectors from the ciphertext. Use the same character-numbering 
scheme to convert the ciphertext blocks into ciphertext vectors of size 3.

 4. Decrypt the message. For each block, carry out the following steps:

a. Multiply the ciphertext vector by the decryption key matrix, modulo 
29, to generate a deciphered vector.

b. Convert the numerical values in the deciphered vector back to text 
characters using the reverse mapping scheme.

c. Add the deciphered characters to a mutable list of characters, which 
will become the decrypted message (plaintext) once all the blocks 
have been processed.

Finally, keep in mind that it’s customary to pick an encryption key matrix 
made up of only integers, preferably falling between 0 and the modulus.

The Code
We’re ready to implement the Kotlin code for Hill’s encryption and decryp-
tion method. The code is organized in a top-down manner, starting with 
global declarations, continuing with the main() function, and ending with a 
series of short helper functions. We’ll review everything in sequence.

Variables and Data Structures

We begin by declaring the variables and data structures needed to imple-
ment Hill’s method.

/*  --- Hill's method for encrypting and decrypting texts --- */

// Declare the key matrix and its inverse.
// keyInv is based on mod 29.
val key = arrayOf(
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    intArrayOf(13, 11, 6),
    intArrayOf(15, 21, 8),
    intArrayOf(5, 7, 9)
)

val keyInv = arrayOf(
    intArrayOf(1, 12, 8),
    intArrayOf(20, 0, 6),
    intArrayOf(0, 3, 20)
)

val dim = key.size
const val alphabet = "abcdefghijklmnopqrstuvwxyz .?"

data class Block(
    val t1: Char,
    val t2: Char,
    val t3: Char,
)

val indexVector = IntArray(dim)
val processedVector = IntArray(dim)
val blocks = mutableListOf<Block>()
val processedText = mutableListOf<Char>()

First, we create the matrices for encryption and decryption (key and 
keyInv). For this project, we’ll accept these as given, but you can use online 
tools to create a different encryption key matrix that meets the required 
conditions and calculate the corresponding inverse matrix. The size of these 
square matrices is captured in the parameter dim, which is later used as the 
block size for processing messages. We also define a string called alphabet that 
stores all the valid letters that can be used in the plaintext and ciphertext.

Next, we introduce a data class called Block, which we’ll use to store the 
text blocks generated while processing the message. These blocks will be 
stored as a mutable list named blocks. We also create a few other collections 
to temporarily hold and manipulate the vectors created during encryption 
and decryption operations, along with a mutable list named processedText to 
store the final list of characters. Since the encryption and decryption pro-
cesses are very similar, we’ll be able to use these variables and collections 
during both processes to store the intermediate and final values.

The main() Function

The main() function calls a series of helper functions to coordinate the over-
all encryption or decryption process.

fun main() {
    println("\n*** Cryptography with Hill's Method ***\n")
    runValidation()
    println("\nEnter 1 for encryption or 2 for decryption:")

  1 when(val choice = readln().toInt()) {
        1 -> {
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            println("You have chosen encryption\n")
            getText()
            encrypt()
            printProcessedText(choice)
        }
        2 -> {
            println("You have chosen decryption\n")
            getText()
            decrypt()
            printProcessedText(choice)
        }
        else -> println("\nInvalid choice...exiting program\n")
    }
}

In main(), we first call the runValidation() function, which uses matrix 
multiplication (mod 29) to ensure that the encryption and decryption 
matrices are valid. We then prompt the user to choose which operation 
to carry out: encryption (enter 1) or decryption (enter 2). Based on the 
choice, we use a when block 1 to implement the steps to encrypt or decrypt 
a message.

For both choices, we start with the getText() function, which takes in 
the message to be encrypted or decrypted from the user as a text string 
and divides it into blocks. We then call encrypt() or decrypt(), depending 
on the choice made earlier. Finally, we display the result with help from the 
printProcessedText() function.

The Helper Functions

There are several helper functions called from within the main() function. 
We’ll turn to those next, starting with the functions that help validate the 
matrices.

fun runValidation() {
    println("key matrix dimension:")
    println("${key.size}  x  ${key[0].size}\n")

    // validation of key and keyInv
    val productMatrix = multiplyMatricesMod29(key, keyInv,
        r1=dim, c1=dim, c2=dim)
    displayProduct(productMatrix)
}

fun multiplyMatricesMod29(firstMatrix: Array <IntArray>,
                          secondMatrix: Array <IntArray>,
                          r1: Int,
                          c1: Int,
                          c2: Int): Array <IntArray> {
    val product = Array(r1) { IntArray(c2) }
    for (i in 0 until r1) {
        for (j in 0 until c2) {
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            for (k in 0 until c1) {
                product[i][j] += (firstMatrix[i][k] *
                                  secondMatrix[k][j])
            }
          1 product[i][j] = product[i][j] % 29
        }
    }
    return product
}

fun displayProduct(product: Array <IntArray>) {
    println("[key * keyInv] mod 29 =")
    for (row in product) {
        for (column in row) {
            print("$column    ")
        }
        println()
    }
}

The runValidation() function displays the size of the key matrices. It then 
calls multiplyMatricesMod29() to do the validation check and shows the results 
with displayProduct(). The matrices are considered valid if one is the inverse 
of the other, modulo 29. If this is the case, the product of the two matrices, 
modulo 29, should be an identity matrix where all elements are zeros, except 
for ones along the diagonal from the top left to the bottom right.

In multiplyMatricesMod29(), we test this out, using three nested for loops 
to multiply the encryption and decryption key matrices, taking modulo 29  
of each resulting value before putting it in the product matrix 1. See 
the “Multiplying Two Matrices” box for details about the math behind 
this process.

MULT IPLY ING T WO M AT R ICES

To multiply two matrices, we must first ensure that their shapes (number of rows 
and columns) are compatible: the number of columns in the first matrix must 
be equal to the number of rows in the second matrix . As a result, the product 
matrix will have the same number of rows as the first matrix and the same num-
ber of columns as the second matrix .

Once this condition is met, we work through the rows of one matrix and 
the corresponding columns of the other, multiplying and summing the values . 
Say we have the following two 3×3 matrices, A and B:

A =  4  5  6 ,
1  2  3 

7  8  9 
B =  6  5  4

9  8  7 

3  2  1 

Here are the steps to find their product matrix C:
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1 . Multiply the elements in the first row of matrix A by the elements in the first 
column of matrix B and add the results together: (1 × 9) + (2 × 6) + (3 × 3) 
= 9 + 12 + 9 = 30 . This is the value at C[1,1], the first row and first column 
of the product matrix .

2 . Multiply the elements in the first row of matrix A by the elements in the 
second column of matrix B and add the results together: (1 × 8) + (2 × 5) 
+ (3 × 2) = 8 + 10 + 6 = 24 . This is the value at C[1,2], the first row and 
second column of the product matrix .

3 . Multiply the elements in the first row of matrix A by the elements in the 
third column of matrix B and add the results together: (1 × 7) + (2 × 4) 
+ (3 × 1) = 7 + 8 + 3 = 18 . This is the value at C[1,3], the first row and third 
column of the product matrix .

4 . Repeat steps 1 through 3 for the second and third rows of matrix A to get 
the values in the second and third rows of the product matrix C .

After performing all these calculations, we get this result:

A =
30 24 18
84 69 54

138 114 90

The displayProduct() function neatly formats and prints the contents 
of the product matrix. As you’ll later see in the example output, the result 
should indeed be an identity matrix.

Here’s the getText() function, which we call from main() at the start of 
the encryption or decryption process:

fun getText() {
    println("Enter text for processing:")
    var text = readln().lowercase()
    val tmp = " " // Use a space for padding.

  1 when(text.length % 3) {
        1 -> text = text + tmp + tmp
        2 -> text += tmp
    }
    for (i in text .indices step 3)
        blocks.add(Block(text[i], text[i+1], text[i+2]))
}

The function uses readln() to take in the plaintext or ciphertext from 
the user. We convert all the characters to lowercase since we have only low-
ercase letters in our alphabet. We then check if the input string is divisible 
by 3 1 and pad it with spaces if not. Finally, we use a for loop with a step 
size of 3 to break the text into three-character blocks. Each one is stored in 
a Block object and added to the blocks mutable list.
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The remainder of the helper functions do the work of actually encrypt-
ing and decrypting the text.

fun encrypt() {
    for (block in blocks) {
        getIndexBlock(block)
        encryptIndexBlock()
        addToProcessedText()
    }
}

fun decrypt() {
    for (block in blocks) {
        getIndexBlock(block)
        decryptIndexBlock()
        addToProcessedText()
    }
}

fun getIndexBlock(block: Block) {
    val (x,y,z) = block
    indexVector[0] = alphabet .indexOf(x)
    indexVector[1] = alphabet .indexOf(y)
    indexVector[2] = alphabet .indexOf(z)
}

fun encryptIndexBlock() {
    for (j in 0 until  3) {
        var sum = 0
        for (i in 0 until  3) {
            sum += indexVector[i] * key[i][j]
        }
        processedVector[j] = sum % 29
    }
}

fun decryptIndexBlock() {
    for (j in 0 until  3) {
        var sum = 0
        for (i in 0 until  3) {
            sum += indexVector[i] * keyInv[i][j]
        }
        processedVector[j] = sum % 29
    }
}

fun addToProcessedText() {
    processedVector.forEach { i ->
        processedText += alphabet[i]
    }
}
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fun printProcessedText(choice: Int) {
    when(choice) {
        1 -> println("\nHere is the encrypted text:")
        2 -> println("\nHere is the decrypted text:")
    }
    print(processedText.joinToString(""))
}

The encrypt() and decrypt() functions both iterate through the Block 
objects in the blocks list and call a series of helpers to process them. The 
first helper called is the getIndexBlock() function, which looks up each char-
acter’s index in the alphabet string, thereby converting each character to an 
integer. The values are stored in the indexVector array.

Next, we call encryptIndexBlock() or decryptIndexBlock(), which converts 
the plaintext vector into a cipher (encrypted) vector or vice versa by mul-
tiplying the vector by the appropriate matrix (key or keyInv), modulo 29. 
Multiplying a vector by a matrix is much like multiplying two matrices, but 
in this case, we need only two levels of for loops. The result goes in the 
processedVector array.

Our last encryption and decryption helper is the addToProcessedText() 
function, which takes each number from the processedVector array, looks up 
the corresponding character from the alphabet string, and adds that character 
to processedText, a mutable list. In the end, once all the vectors are processed, 
this list contains the final encrypted or decrypted text. Back in main(), we 
call the printProcessedText() function, which concatenates all the characters 
stored in the processedText list into a single string for easy printing.

The Result
Here’s a sample run of the program in encryption mode:

*** Cryptography with Hill's Method ***

key matrix dimension:
3  x  3

[key * keyInv] mod 29 =
1    0    0
0    1    0
0    0    1

Enter 1 for encryption or 2 for decryption:
1
You have chosen encryption

Enter text for processing:
Code is like humor. It is bad code when you have to explain it.

Here is the encrypted text:
tsgsiomjjnhtvwpqxs.ahk?ru gbn tsgbtynurosksdoqfb a?ujsmtexvjcji
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First, notice the validation check: the product of the two matrices is 
indeed an identity matrix, with ones running along the diagonal and zeros 
everywhere else. Then notice the final output, where the program has 
turned the readable plaintext into unreadable gibberish. The process also 
works in reverse: if you choose the decryption option (enter 2) and input 
the encrypted text, the program will instantly convert the ciphertext back 
to the original plaintext.

Currently, the final result is displayed in all lowercase letters. I invite 
you to improve the printProcessedText() function so that the final result is 
capitalized as needed before printing. If you’re thorough, you’ll soon real-
ize that implementing a complete set of capitalization rules isn’t as simple 
as it sounds.

Project 16: Simulate a One-Dimensional Random Walk
So far in this chapter, the projects have all been deterministic, meaning 
there’s a unique solution for a given set of input parameters. If we were to 
run the code multiple times with the same input, the output would remain 
unchanged. In this project, we’ll explore a different kind of problem, one 
that’s stochastic in nature. In a stochastic problem, the output for a given set of 
inputs isn’t predetermined. We may be aware of various possible outcomes, or 
a range within which the output will fall, but the specific value generated by 
an individual instance of the experiment is determined purely by chance. To 
illustrate this concept, we’ll probe the idea of a random walk.

A random walk is a process made up of a series of random steps, actions 
with multiple possible outcomes. We know the probability of each potential 
outcome, but the actual outcome is determined randomly. For example, 
rolling a die is a type of random step. Assuming the die is fair, each of its 
six sides will have the same likelihood of landing face up (one-sixth, or 
approximately 16.67 percent). Therefore, when we actually roll the die, we 
can’t know for sure what number we’ll get. Our guesses will be correct only 
16.67 percent of the time.

Random walks can be described using a mathematical space with a cer-
tain number of dimensions, depending on the nature of the random step. 
Let’s say we’re considering the movement of a heavily inebriated person 
who has just come out of a pub. The street in front of the pub runs east–
west. This person is totally disoriented and is taking random steps along the 
street in both directions. We can mathematically describe the distance the 
person travels over time as the sum of individual steps along the x-direction 
(the x-axis being the east–west line). We could record each step toward 
the east as +1 and a step in the opposite direction as −1 (assuming all steps 
cover the same distance). This is an example of a one-dimensional random 
walk—we need only the x-axis to describe it mathematically.

Now suppose the person has been drinking in the middle of an open 
field and has started to wander randomly in different directions. The 
 person’s steps can now have both an x-component (east or west) and 
a y-component (north or south). In this case, to measure the distance 
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traveled from the center of the field, we’ll have to track the person’s move-
ments in a two-dimensional space, which will make this a two-dimensional 
random walk problem.

A well-known example of a random walk is Brownian motion, named 
for Robert Brown, a 19th-century Scottish botanist. Using a microscope, 
Brown was observing grains of pollen immersed in water when he noticed 
that the grains were constantly moving in random directions. In fact, we 
can find similar movements whenever very small particles are injected in a 
fluid medium, such as dust or smoke particles in the air or the movement 
of particles in a colloidal suspension such as milk or paint. Brown’s observa-
tion was an important scientific discovery that remained unexplained for 
more than half a century until 1905, when Albert Einstein explained that 
Brownian motion was caused by the continuous bombardment of the pol-
len grains by the surrounding water molecules.

In this exercise, we’ll build and simulate a 1D random walk model 
in Kotlin. This will allow us to gain a deeper insight into how particles or 
objects move in one dimension through random steps. In particular, by 
repeating the simulation many times and plotting the results, we’ll be able 
to identify patterns and explore the statistical properties that underlie this 
dynamic behavior.

A One-Dimensional Model
Imagine a single particle moving randomly along a line in small steps. For 
simplicity’s sake, we’ll assume that the particle’s step size remains constant 
and that steps are made at steady time intervals (we do not need to use time 
as an explicit variable in our model). Physicists often call this scenario a free 
diffusion problem in one dimension. The process is schematically shown in 
Figure 4-6.

2 0 146 3 5

x = 0

∆x = –1 ∆x = +1

Figure 4-6: A random walk in one dimension, starting at x = 0

The particle starts at location x = 0 and moves in discrete steps of 
length Δx = ±1. The direction of the particle’s movement is random, so its 
next position after 0 can be either 1 (with a displacement of +1) or 2 (with a 
displacement of −1). The probability p of choosing either direction is equal, 
so p = 0.5. Notice that at any given location, the particle can change its 
direction, so it’s possible for the particle to take several random steps and 
end up back where it started.

The question we’re interested in exploring is this: After making an arbi-
trary number of steps, n, how far on average will the particle have moved 
from its starting position? To answer this question, we’ll need to simulate 
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many random walks—say, 500 walks of 1,000 steps each—and analyze the 
results. We can’t simply take the average of the cumulative distances trav-
eled in the different simulations, however; the particle can drift in both 
the positive and negative x-directions, so the net-positive and net-negative 
distances would likely cancel each other out, giving us an average distance 
of roughly 0. Instead, we’ll use the root-mean-square (RMS) distance, which is 
calculated in three steps:

 1. Square all the distances from all the simulations after a given number 
of steps n. This converts any negative numbers to positive numbers.

 2. Add all the results from step 1 and divide by the number of simulations 
to find the mean (average) of the squared distances.

 3. Take the square root of step 2’s result to arrive at the RMS distance.

Based on past research conducted on one-dimensional random walks, 
we know that the RMS distance exhibits a nonlinear relationship with 
the number of steps taken; in theory, the RMS distance after the nth step 
should equal the square root of n. To validate this notion, we’ll compute 
the RMS distance (the simulated RMS) and the square root of n (the theoretical 
RMS) and plot them both against the number of steps, n. Hopefully, the 
two plots will be similar. We’ll also plot the mean distance traveled at each 
time step, which should remain close to 0.

In a separate graph, we’ll visualize the trajectories of the 500 random 
walks themselves. This should help illustrate the random nature of the out-
comes and give further support to our theories about the cumulative and 
RMS distances traveled.

The Code
I’ll present the code segments for this project in a top-down sequence, start-
ing with some general setup code. Since we want to visualize the random 
walks from different simulations and examine the relationship between the 
cumulative, mean, and RMS distances with the number of steps, we’ll use 
the JavaFX template that we developed and used in Chapter 3.

// import block
import javafx.application.Application
import javafx.scene.Node
import javafx.scene.Scene
import javafx.scene.chart.LineChart
import javafx.scene.chart.NumberAxis
import javafx.scene.chart.XYChart
import javafx .scene .control .ScrollPane
import javafx.scene.layout.Background
import javafx.scene.layout.BackgroundFill
import javafx .scene .layout .CornerRadii
import javafx .geometry .Insets
import javafx.scene.layout.VBox
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import javafx .scene .paint .Color
import javafx.stage.Stage
import kotlin.math.sqrt

// data class
1 data class State(
    var step: Double,
    var dist: Double
)

// global parameters
val numStep = 1000
val numSim = 500

2 // Create lists needed for plotting line charts.
val xList  : List<State> = List(numStep) { State(0.0, 0.0) }
val avgList: List<State> = List(numStep) { State(0.0, 0.0) }
val rmsList: List<State> = List(numStep) { State(0.0, 0.0) }
val expList: List<State> = List(numStep) { State(0.0, 0.0) }

val states1 = mutableListOf<List<State>>()
val states2 = mutableListOf<List<State>>()

class RandomWalk1D : Application() {
    override fun start(primaryStage: Stage) {
      3 val root = VBox()
        /*------------------------------------------*/
      4 root.styleClass.add("color-palette")
        root.background = Background(BackgroundFill(Color.WHITE,
             CornerRadii.EMPTY, Insets.EMPTY))
        /*------------------------------------------*/
      5 val scroll = ScrollPane()
        scroll.setContent = root
        val scene = Scene(scroll, 550.0, 850.0, Color.WHITE)
        primaryStage.title = "1D random Walk Simulation"
        primaryStage.scene = scene
        primaryStage.show()

        // ----- Random walk simulation starts here. -----
        // Call random walk function.
        randomWalk1d()
        // Get the theoretical RMS values.
        calcRMS1d()
        // Create line charts.
        createRWChart1(root)
        createRWChart2(root)
    }
}

fun main() {
    Application.launch(RandomWalk1D::class.java)
}
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The code segment starts with the import block. Since this project will 
use the XY charting features of JavaFX instead of the canvas feature, the 
import block is somewhat different from what we needed for Project 13, and 
it includes a few extra lines of code to import the Background, BackgroundFill, 
CornerRadii, and Insets features, which we’ll use to set the chart background 
to white.

Next, we declare a simple data class State 1 for holding individual data 
points during the simulation. Its step property represents the number of 
steps taken since the beginning of the random walk, and dist is the cumu-
lative distance traveled after that many steps. We then declare two global 
parameters: numStep, to specify the maximum number of steps per simula-
tion, and numSim, to set the maximum number of simulations.

We’ll accumulate data in a number of lists 2, each of size numStep and 
type State, as follows:

xList    Stores the cumulative distance traveled after each step for a par-
ticular simulation

avgList    Stores the arithmetic average (mean) of the cumulative dis-
tances traveled across all simulations after each step

rmsList    Stores the RMS distance calculated across all simulations after 
each step

expList    Stores the theoretical (exponential) RMS distance after 
each step

All these lists are initialized to (0.0, 0.0), meaning all simulations start at 
step number 0 and position 0. In addition to these lists, we also create two 
mutable lists, states1 and states2, which we’ll use for charting purposes.

Inside the RandomWalk1D application class, we use a VBox container 3 
to hold the chart objects, as we’ll generate two sets of charts that will be 
placed vertically inside the VBox. Notice the additional lines of code for set-
ting the background of the container to white programmatically 4, without 
using the cascading style sheets needed for more extensive customizations. 
We’ve also introduced the ScrollPane feature 5, which will allow us to scroll 
the chart window to view the top or the bottom chart, as needed. We can 
also enlarge the window to make both charts visible at the same time.

After setting up the graphics window, we call three custom functions 
that will run the simulation and help visualize the results. The first call is 
to the randomWalk1d() function, which simulates numSim one-dimensional ran-
dom walks over numStep steps. Here’s how it works:

fun randomWalk1d() {
    // Create local arrays.
  1 val s = Array (numSim) {DoubleArray(numStep)}
    val sumX = DoubleArray(numStep)
    val sumX2 = DoubleArray(numStep)

    // Walk numStep steps numSim times.
    for (i in 0 until numSim) {
        var draw: Int
        var step: Int
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        for (j in 1 until numStep) {
          2 draw = (0..1).random()
            step = if (draw == 0) -1 else 1
          3 s[i][j] = s[i][j-1] + step
            sumX[j] += s[i][j]
            sumX2[j] += (s[i][j] * s[i][j])
            xList[j].step = j.toDouble()
            xList[j].dist = s[i][j]
        }
      4 states1.add(xList.map {it .copy()})
    }

    // Create average (mean) and RMS for distances traveled.
    for (j in 0 until numStep) {
        avgList[j].step = j.toDouble()
        avgList[j].dist = sumX[j] / numSim
        rmsList[j].step = j.toDouble()
        rmsList[j].dist = sqrt(sumX2[j] / numSim)
    }
  5 states2.addAll(listOf(avgList, rmsList))
}

The function body starts by creating three local arrays of type 
DoubleArray. The first, s, is a two-dimensional array that stores the cumula-
tive distance traveled at each step of each simulation 1. The others are 
one-dimensional arrays, sumX and sumX2, to save the running sums of the 
cumulative distances at each step and the sums of squared distances at each 
step, respectively. We’ll use these values to get the mean and RMS distances.

The random walks are implemented inside a nested for loop. The outer 
loop controls the number of simulations, and the inner loop makes the 
particle take numStep steps in succession. During each step, a local variable 
draw is randomly set to either 0 or 1 with equal likelihood 2. Based on the 
outcome, step (referred to as Δx in Figure 4-6) is set to -1 or 1, which is then 
added to the cumulative distance traveled up to the previous step of the 
simulation 3. These cumulative distances are used to create the elements 
of xList, which is then copied and passed on to states1 once per simulation 4. 
Notice how we’re reusing the memory allocated for xList during each simu-
lation by overwriting the values of its elements. In the end, states1 has all 
the data we need to visualize the random walks themselves.

Once we’re done with the random walks, we use the resulting lists, sumX 
and sumX2, to create the avgList and rmsList inside another for loop by divid-
ing the elements of sumX and sumX2 by numSim. Here sumX[j] is the sum of all 
the elements in column j of the s[i][j] matrix, where i represents the simu-
lation number and j represents the number of steps taken so far. (Likewise, 
sumX2[j] is the same, squared.) Finally, avgList and rmsList are passed on as 
elements of states2 5, which we defined earlier as a list of lists.

The second function call inside the application class is calcRMS1d(). It 
generates the theoretical RMS distance at each step:

fun calcRMS1d() {
    // Create the theoretical (exponential) rms/list.
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    for (j in 0 until numStep) {
        expList[j].step = j.toDouble()
      1 expList[j].dist = sqrt(j.toDouble())
    }
    states2.add(expList)
}

We know from the theoretical analysis of the one-dimensional random 
walk problem that the RMS distance is a nonlinear function of the number 
of steps n, which can be expressed as xn = √n, where xn is the RMS distance 
for the nth step (n is equivalent to looping variable j in the code). We use 
this relationship in the calcRMS1d() function to calculate the theoretical 
RMS distances and update expList 1. We’ll use this list to create a side-by-
side plot of the theoretical and simulated RMS distances to see how closely 
they follow each other.

In the last two lines of the application class, we make two successive 
calls to the createRWChart1() and createRWChart2() functions, shown here:

fun createRWChart1(root: VBox) {
    val xyChart1 =
        singleXYChart(states1,
            title = "Random Walk 1D Experiment",
            xLabel = "Steps",
            yLabel = "Cumulative distance traveled")
    root.children.add(xyChart1)
}

fun createRWChart2(root: VBox) {
    val xyChart2 =
        singleXYChart(states2,
            title = "Random Walk 1D Experiment",
            xLabel = "Steps",
            yLabel = "Mean and RMS distance traveled")
    root.children.add(xyChart2)
}

Other than the chart labels, the only difference between these two 
functions is that the first one uses states1 and the second one uses states2 to 
generate the respective charts. Both of these functions call the singleXYChart() 
function (which we discussed and used in Chapter 3) to draw the line 
charts and stack them inside a scroll pane.

The Result
When you run the full code on your device, you should see a single scrol-
lable window pop up with two separate charts. Let’s first consider the visual-
ization of the random walks themselves, shown in Figure 4-7.
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Figure 4-7: The random walk paths from 500 simulations  
of 1,000 steps

This chart shows all 500 random paths generated by the randomWalk1d() 
function (one per simulation, based on our global numSim parameter). These 
paths show a number of key features of one-dimensional random walks:

• Each random path is unique, evident from the tangled web of lines 
moving across the chart.

• Most random walks tend to stay close to their starting position, even 
after many steps. We can see this in the darker band along the x-axis.

• The paths are equally dispersed on both sides of x = 0, as expected. You 
could confirm this by creating histograms of the cumulative distances 
traveled at different numbers of steps. (I’ll leave this for you to try out 
as an exercise.)

• For any given number of steps, if we add the cumulative distances from 
all simulations, the sum will be close to zero because positive and nega-
tive distances will cancel each other. For the same reason, the arithme-
tic mean will also be close to zero.

• The RMS distance increases with the number of steps, as confirmed by 
the gradual widening of the band that envelops all random paths. The 
RMS distance is therefore a better measure for the average distance 
traveled than the arithmetic mean, as we don’t care about the direction 
of the movement.

All these points collectively provide the answer we were seeking at 
the start of this project. A particle moving randomly in one dimension 
will likely trace a path that will initially stay close to its starting position. 
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However, if we follow the particle for a long time, it may gradually move far-
ther away. Again, we can’t predict exactly how far a particular particle will 
move, but if we measure the RMS distance from many different particles, 
we’ll see that the RMS distance increases with the number of steps. Our 
other chart, shown in Figure 4-8, helps us explore this last point further.

Theoretical RMS

Simulated RMS

Simulated mean

Figure 4-8: The mean and RMS distances traveled for a given  
number of steps

Figure 4-8 charts three lines. First, we have the line labeled “Simulated 
mean,” generated from the data in avgList. This line stays very close to 
zero, confirming one of the key points made based on Figure 4-7: that the 
arithmetic average or mean for any number of steps will be zero if we have 
a sufficiently large number of observations. Second, we have the “Simulated 
RMS” line, generated from the data in rmsList, which clearly shows the RMS 
distance increasing (although at a decreasing rate) with the number of 
steps. Third, the smooth “Theoretical RMS” line represents the theoretical 
RMS distances from expList, calculated by simply taking the square root of 
the number of steps. Again, we can visually confirm that the simulated RMS 
values are very close to the theoretically expected RMS values.

The minor discrepancies we see between the simulated and theoretical 
RMS values are to be expected. The simulated RMS values will approach 
the theoretical values as the number of simulations approaches infinity. 
I invite you to run the code again, this time setting numSim to 5000. Make 
sure that you comment out the call to the createRWChart1() function before 
doing that. The default implementation of JavaFX is memory and computa-
tion intensive, and trying to plot 5,000 lines, each with 1,000 data points, 
can take a while depending on your processor and memory configuration. 
However, if you do this experiment as suggested, you’ll see that with the added 
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random walks, the simulated and theoretical RMS lines become virtually the 
same. If you go further by setting numSim to 50000, you’ll see only one line.

E X ERCISE

Now that you’ve seen how to model a random walk in one dimension, try 
extending your random walk app to model molecular diffusion in two dimen-
sions . The effect should be similar to adding a drop of food coloring to the cen-
ter of a dish of water and watching the color spread .

Hint: To be able to track distances in 2D, the State data class has to be 
changed to replace dist with two values for the x- and y-components—say, 
distX and distY . At each step in the random walk, treat these values sepa-
rately . For the x-component, for example, assume that a particle can either stay 
still, move toward the positive x-direction, or move toward the negative x-direction . 
You can code this as stepX = (-1..1).random(), meaning stepX is equally likely 
to be -1, 0, or 1 . Repeat the same for the y-component .

Define how large you want the dish to be (set an appropriate diameter), 
and decide what happens when a particle hits the boundary of the dish . 
(Perhaps the particle should bounce off the wall .) Update the particle posi-
tions inside a nested for loop, and update the series for charting using the 
ScatterChart feature of JavaFX . Start with 300 particles . To show particle 
positions dynamically (which looks really cool), run the random walk function 
and update the data points as an animation, using Timeline and KeyFrame, as 
discussed in Chapter 3 .

Summary
In this chapter, we used Kotlin code and custom algorithms to solve math-
related problems. The problems weren’t just theoretical; they also had 
practical applications in fields like mathematics, geodesy, navigation, and 
cryptography. Throughout our journey, we employed various mathematical 
concepts, operations, and tools, including basic arithmetic, math and trigo-
nometric functions, the Pythagorean theorem, the Fibonacci sequence, the 
haversine formula, modulo operations, and linear algebra. We also probed 
the realm of stochastic processes, exploring the generation and utilization 
of random numbers to simulate random phenomena.

Along the way, we used many core features of Kotlin, such as variables 
and collections, data classes, and conditional and iterative structures like 
if, when, for, and while. We also discovered the convenience of functions and 
lambdas, along with the rich set of mathematical and graphics library func-
tions at our disposal.
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