Math for Deep Learning

What You Need to Know to Understand Neural Networks

by Ronald T. Kneusel

errata updated to print 3

Page		Erro	r	Correction			Print corrected
5	we can let NumPy choose the data type for us, or we can specify it explicitly .			we can let NumI	we can let NumPy choose the data type for us, or we can specify it explicitly .		
6	NumPy Name	Equivalent C Type	Range	NumPy Name	Equivalent C Type	Range	Print 2
	float32	float	$\pm [1.175 \times 10^{38}, 3.403 \times 10^{38}]$	float32	float	$\pm [1.175 \times 10^{-38}, 3.403 \times 10^{38}]$	
	uint8	unsigned char	$[0, 255 = 2^2 - 1]$	uint8	unsigned char	$[0, 255 = 2^8 - 1]$	
18	If there's no chance the something will happen, its probability is zero.			If there's no chance that something will happen, its probability is zero.			Pending
29	b = np.random		of people, where the random integer in	<pre>a = np.random.randint(0,365) b = np.random.randint(0,365) The code simulates 100,000 random pairs of people, where the random integer in [0, 365] represents the person's birthday.</pre>			r in
29	b = np.rano	dom.randint(0, <mark>364</mark> ,m)		<pre>b = np.random.randint(0,365,m)</pre>			Pending
39	which shows us correct way to compare conditional probabilities.			which shows us the correct way to compare conditional probabilities.			Pending
39	s = np.random.	randint(0,50,3)		<pre>s = np.random.choice(50,3,replace=False)</pre>			Pending
82	The top chart in Figure 4-4 shows the box plot for the three sets of exam scores in lexams.npyl .			The top chart in Fig exams.npy.	gure 4-4 shows the box pl	ot for the three sets of exam scores in	n Pending

Page	Error	Correction	
119	Equation replacement	$\boldsymbol{a} \times \boldsymbol{b} = \ \boldsymbol{a}\ \ \boldsymbol{b}\ \sin(\theta) \hat{\boldsymbol{n}}$ = $(a_1 b_2 - a_2 b_1, a_2 b_0 - a_0 b_2, a_0 b_1 - a_1 b_0)$ (5.6)	
128	Equation replacement	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 11 \\ 12 \\ 13 \end{bmatrix} = \begin{bmatrix} 74 \\ 182 \\ 290 \end{bmatrix}$	Print 3
131	for $n, m \in I^+$ (positive integers) and where A is a square matrix.	for $n, m \in \mathbb{Z}^+$ (positive integers) and where A is a square matrix.	Pending
175	But $e x \ln a = a^x$, so we have	But $e^{x \ln a} = a^x$, so we have	Print 3
183	For example, above, we saw that the partial derivative of $f(x, y) =$	For example, above, we saw that the partial derivative of $f(x, y, t, z) =$	Print 3
198	Equation replacement	$\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial f_{00}}{\partial x} & \frac{\partial f_{01}}{\partial x} & \cdots & \frac{\partial f_{0,m-1}}{\partial x} \\ \frac{\partial f_{10}}{\partial x} & \frac{\partial f_{11}}{\partial x} & \cdots & \frac{\partial f_{1,m-1}}{\partial x} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{n-1,0}}{\partial x} & \frac{\partial f_{n-1,1}}{\partial x} & \cdots & \frac{\partial f_{n-1,m-1}}{\partial x} \end{bmatrix}$	Print 3
201	Assume f accepts an m -element input and returns an n -element vector output.	Assume f accepts an m -element input and returns an n -element vector output.	Pending
236	Equation replacement	$f_0: \begin{bmatrix} 4 & 11 & 8 \\ 9 & 8 & 1 \\ 15 & 0 & 6 \end{bmatrix} + \begin{bmatrix} 10 & 5 & 4 \\ 1 & -2 & -1 \\ -6 & -4 & -3 \end{bmatrix} = \begin{bmatrix} 14 & 16 & 12 \\ 10 & 6 & 0 \\ 9 & -4 & 3 \end{bmatrix} + 1 = \begin{bmatrix} 15 & 17 & 13 \\ 11 & 7 & 1 \\ 10 & -3 & 4 \end{bmatrix}$	Pending

Page	Error	Correction	Print corrected
257	Equation replacement	$\frac{\partial E}{\partial \mathbf{x}} = \frac{\partial E}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	Print 3
		$= \left[\frac{\partial E}{\partial y_0} \frac{\partial y_0}{\partial x_0} \frac{\partial E}{\partial y_1} \frac{\partial y_1}{\partial x_1} \dots \right]^\top$	
		$= \left[\frac{\partial E}{\partial y_0} \sigma'(\mathbf{x}_0) \; \frac{\partial E}{\partial y_1} \sigma'(\mathbf{x}_1) \; \dots \right]^\top$	
		$=\frac{\partial E}{\partial \mathbf{y}}\odot\boldsymbol{\sigma}'(\mathbf{x})\tag{10.10}$	
261	<pre>self.delta_w += np.dot(self.input.T, output_error)</pre>	<pre>self.delta_w += np.dot(weights_error)</pre>	Print 3
265	\ldots so we reshape the training data from (60000, 196) to (60000, 1 , 1 96) \ldots	so we reshape the training data from (60000, 14,14) to (60000,1,196)	Pending
286	As before, we begin at $x = 0.75 \dots$	We begin at $x = 0.75 \dots$	
300	<i>t</i> , an integer starting at zero, is the timestep. Here, <i>t</i> , an integer starting at one , is the timestep.		Pending
307	URL update	You can find them here: https://www.cs.toronto.edu/~hinton/coursera_lectures.html	Print 2