
Intelligence gathering is the second step of
a penetration test, following the preengage-

ment activities. Your goals during this phase
are to gain accurate information about your

targets without revealing your presence, learn how the
organization operates, and determine the best way in. If
you don’t perform these tasks thoroughly, you may miss
vulnerable systems and viable attack vectors. It takes
time and patience to sort through web pages, perform
Google hacking, and map systems to fully understand
the infrastructure of a particular target. You’ll also need
careful planning, research, and, most importantly, the
ability to think like an attacker.

3
I N T E L L I G E N C E G A T H E R I N G

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

16 Chapter 3

Before you begin intelligence gathering, consider how you will record
your actions and the results you achieve. Most security professionals quickly
learn that detailed notes can mean the difference between success and fail-
ure. Just as a scientist must achieve reproducible results, other experienced
penetration testers should be able to reproduce your work using your docu-
mentation alone.

W A R N I N G If you follow the procedures in this book, you can damage your system and your tar-
get, so be sure to operate in a test environment. (For help, see Appendix A.) Many of
the examples in these chapters can be destructive and make a target system unusable.
Some of these activities could even be considered illegal if undertaken by someone with
bad intentions, so follow the rules and don’t be stupid.

Most people find themselves eager to exploit systems and get root privi-
leges, but you need to learn to walk before you can run.

Passive Information Gathering
By using passive or indirect information gathering techniques, you can discover
details about targets without touching their systems. For example, you can
use these techniques to locate network boundaries, identify network main-
tainers, and even learn what operating system and web server software is on
the target network.

Open source intelligence (OSINT) is a form of intelligence collection that
uses open or readily available information to find, select, and acquire
details about a target. Several tools make passive information gathering
almost painless, including complex software such as Yeti and Whois. In this
section, we’ll explore the process of passive information gathering and the
tools that you might use for this step.

Imagine, for example, an attack against https://www .trustedsec .com. Our
goal is to determine, as part of a penetration test, what systems the company
owns and what systems we can attack. Some systems may not be owned by the
company and could be considered out of scope and unavailable for attack.

Whois Lookups
Whois is a tool that allows you to search for information about domains and
internet infrastructure. Let’s begin by using Kali Linux’s Whois lookup to
find the names of trustedsec .com’s domain servers:

msf > whois trustedsec .com
[*] exec: whois trustedsec .com
--snip--
 Domain Name: trustedsec .COM

 Domain servers in listed order:
 GLEN .NS .CLOUDFLARE .COM
 LEIA .NS .CLOUDFLARE .COM

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

Intelligence Gathering 17

We learn that the Domain Name System (DNS) servers are hosted by
Cloudflare, a third party, so we should not include these systems in our
penetration test because we have no authority to attack them. In most large
organizations, however, the DNS servers are housed within the company and
are viable attack vectors. Zone transfers and similar DNS attacks can often
be used to learn more about a network from both the inside and outside.
But in this scenario, we should instead move on to a different attack vector.

Netcraft
Netcraft (https://searchdns.netcraft.com) is a web-based tool that we can use
to find the IP address of a server hosting a particular website, as shown
in Figure 3-1.

Figure 3-1: Using Netcraft to find the IP address of the server hosting a particular website

Once we’ve identified trustedsec .com’s IP address as 104.26.15.63, we can
do another Whois lookup on that IP address to discover additional informa-
tion about the target:

msf > whois 104.26.15.63
[*] exec: whois 104.26.15.63
NetRange: 104.16.0.0 - 104.31.255.255
CIDR: 104.16.0.0/12
NetName: CLOUDFLARENET
NetHandle: NET-104-16-0-0-1
Parent: NET104 (NET-104-0-0-0-0)
NetType: Direct Allocation
OriginAS: AS13335
Organization: Cloudflare, Inc. (CLOUD14)

We see from the Whois lookup and a quick internet search that this
IP address, belonging to Cloudflare, appears to be that of a legitimate
service provider. Cloudflare helps improve internet security by serving as

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

18 Chapter 3

a reverse proxy between our request and trustedsec .com’s servers. As our
requests pass through Cloudflare, it inspects the traffic and applies secu-
rity rules. Other services, such as Amazon CloudFront, Envoy Proxy, and
Microsoft Azure CDN, also provide reverse proxy services.

Reverse proxies attempt to hide the original IP addresses. However, an
attacker may still be able to recover an IP address using other strategies. An
article detailing some of these techniques is available at https://citadelo.com/
en/blog/cloudflare-how-to-do-it-right-and-do-not-reveal-your-real-ip. Many of these
strategies have been incorporated into Metasploit’s cloud look and bypass
module.

DNS Analysis
DNS servers contain information about domains. To get additional domain
information, we’ll use dig, a tool built into most Unix operating systems,
to query DNS servers about trustedsec .com. Some other great tools for DNS
analysis are fierce and dnsrecon.

In the following example, we use dig to look for the domain’s mail
exchange (MX) record. The MX record contains information about the
server used to process email for that domain:

kali@kali:~$ sudo dig mx trustedsec .com

;; QUESTION SECTION:
;trustedsec .com. IN MX

;; ANSWER SECTION:
trustedsec .com. 5 IN MX 20 mx2 -us1 .ppe -hosted .com.
trustedsec .com. 5 IN MX 10 mx1 -us1 .ppe -hosted .com.

We see that the mail servers are pointing to mx2 -us1 .ppe -hosted .com and
mx1 -us1 .ppe -hosted .com. Some quick research tells us that these websites are
hosted by a third party, which removes them from the scope of our penetra-
tion test.

At this point, we have gathered some valuable information that we
might be able to use against the target. Ultimately, however, we may have to
resort to active information-gathering techniques to get more details.

N O T E The art of passive information gathering isn’t easily mastered in just a few pages
of discussion. See the PTES (http://www.pentest-standard.org) and Cyber
Detective’s OSINT tools collection (https://github.com/cipher387/osint_stuff
_tool_collection) for a list of potential ways to perform additional passive intelligence
gathering.

Active Information Gathering
In active information gathering, we interact directly with a system to learn
more about it. We might, for example, conduct scans to find open ports on
the target or to determine what services are running. Each system or run-
ning service that we discover gives us another opportunity for exploitation.

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

Intelligence Gathering 19

But beware: if you get careless during active information gathering, you
might be nabbed by an intrusion detection system (IDS) or intrusion pre-
vention system (IPS)—not a good outcome for the covert penetration tester.

Port Scanning with Nmap
Having identified the target IP range and trustedsec .com’s IP address with
passive information gathering, we can begin to scan for open ports on the
target by port scanning, a process whereby we meticulously connect to ports
on the remote host to identify those that are active. (In a larger enterprise,
we would have multiple IP ranges to attack instead of only one IP address.)

Nmap is, by far, the most popular port-scanning tool. It integrates with
Metasploit quite elegantly, storing scan output in a database backend for
later use. Nmap lets you scan hosts to identify the services running on each,
any of which might offer a way in.

For this example, let’s leave trustedsec .com behind and instead use scanme
.nmap .org (45.33.32.156), a server maintained by the team at Nmap. If you
would rather scan your own machine, use one of the virtual machines
described in Appendix A. Before we get started, take a quick look at the
basic Nmap syntax by entering nmap from the command line on your Kali
machine. You’ll see immediately that it has several options, but you’ll likely
use only a few of them.

One of the most useful Nmap options is -sS, which runs a stealth TCP
scan that determines whether a specific TCP-based port is open. Another
preferred option is -Pn, which tells Nmap not to use ping to determine
whether a system is running; instead, it considers all hosts to be “alive.” If
you’re performing internet-based penetration tests, you should use this
flag because most networks don’t allow Internet Control Message Protocol
(ICMP), which is the protocol that ping uses. If you’re performing this scan
internally, you can probably ignore this flag.

Let’s run a quick Nmap scan against the scanme .nmap .org (45.33.32.156)
machine using both the -sS and -Pn flags:

kali@kali:~$ sudo nmap -sS -Pn scanme .nmap .org
Nmap scan report for scanme .nmap .org (45.33.32.156)
Host is up (0.088s latency).
Other addresses for scanme .nmap .org (not scanned): 2600:3c01::f03c:91ff:fe18:bb2f
Not shown: 989 closed tcp ports (reset)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
25/tcp filtered smtp
80/tcp open http
135/tcp filtered msrpc
139/tcp filtered netbios-ssn
445/tcp filtered microsoft-ds
554/tcp open rtsp
7070/tcp open realserver
9929/tcp open nping-echo
31337/tcp open Elite

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

20 Chapter 3

Nmap reports a list of open ports, along with a description of the asso-
ciated service for each.

For more detail, try using the -A flag. This option will attempt advanced
service enumeration and banner grabbing, which may give you even more
details about the target system. For example, here’s what we’d see if we were
to call Nmap with the -sS and -A flags, using our same target system:

kali@kali:~$ sudo nmap -Pn -sS -A scanme .nmap .org
Nmap scan report for scanme .nmap .org (45.33.32.156)
Host is up (0.075s latency).
Other addresses for scanme .nmap .org (not scanned): 2600:3c01::f03c:91ff:fe18:bb2f
Not shown: 989 closed tcp ports (reset)
PORT STATE SERVICE VERSION
21/tcp open tcpwrapped
22/tcp open ssh OpenSSH Ubuntu 2ubuntu (Ubuntu Linux; protocol 2) 1
| ssh-hostkey:
| 1024 ac:00:a0:1a:82:ff:cc:55:99:dc:67:2b:34:97:6b:75 (DSA) 2
| 2048 20:3d:2d:44:62:2a:b0:5a:9d:b5:b3:05:14:c2:a6:b2 (RSA)
| 256 96:02:bb:5e:57:54:1c:4e:45:2f:56:4c:4a:24:b2:57 (ECDSA)
|_ 256 33:fa:91:0f:e0:e1:7b:1f:6d:05:a2:b0:f1:54:41:56 (ED25519)
25/tcp filtered smtp
80/tcp open http Apache httpd ((Ubuntu)),
|_http-favicon: Nmap Project
|_http-title: Go ahead and ScanMe!
|_http-server-header: Apache/2.4.7 (Ubuntu)
135/tcp filtered msrpc
139/tcp filtered netbios-ssn
445/tcp filtered microsoft-ds
554/tcp open tcpwrapped
7070/tcp open tcpwrapped
9929/tcp open nping-echo Nping echo
31337/tcp open tcpwrapped
Aggressive OS guesses: Linux 4.4 (95%), Linux 3.2 (93%), DD-WRT v24-sp2 (Linux 2.4.37) (92%) 3

--snip--

No exact OS matches for host (test conditions non-ideal).
Network Distance: 2 hops
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

TRACEROUTE (using port 443/tcp) 4
HOP RTT ADDRESS
1 0.24 ms 192.168.40.2
2 85.56 ms scanme .nmap .org (45.33.32.156)

This advanced service-enumeration scan gives us even more information,
including the application versions 1, the SSH host keys used to authenticate
the server 2, a guess about the target’s operating system 3, and a list of the
hops made in the network from your machine to the target’s machine 4.

Importing Nmap Results into Metasploit

When you’re working with other team members who might be scanning at
different times and from different locations, it helps to know how to run

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

Intelligence Gathering 21

Nmap on its own and then import its results into the Framework. Metasploit
lets you easily import a basic Nmap-generated XML export file (created
with Nmap’s -oX option).

Metasploit comes with built-in support for the PostgreSQL database
system, which is installed by default in both Kali and the official Metasploit
installer. Before you can import files from Nmap into Metasploit, you’ll need
to start and initialize this database by running the following commands:

kali@kali:~$ sudo systemctl start postgresql
kali@kali:~$ sudo msfdb init

To verify that PostgreSQL is running, run the following:

kali@kali:~$ sudo netstat -antp|grep postgres
tcp 0 0 127.0.0.1:5432 0.0.0.0:* LISTEN 2091/postgres
tcp6 0 0 ::1:5432 :::* LISTEN 2091/postgres

Using Metasploit with database support requires no additional configu-
ration, as it connects to PostgreSQL once you launch MSFconsole. The very
first time you launch MSFconsole, you should see a great deal of output as
Metasploit initially creates the necessary database tables.

Metasploit provides several commands that we can use to interact with
the database, as you’ll see throughout this book. (For a complete list, use
the help command.) For now, we’ll use db_status to make sure we’re con-
nected correctly:

msf > db_status
[*] Connected to msf. Connection type: postgresql.

Everything seems to be set up just fine.
Here is an example of how you might use Nmap to scan all the machines

in the subnet 192.168.1.0/24 with the -oX option, which saves the results to a
file called Results-Subnet1.xml:

kali@kali:~$ sudo nmap -Pn -sS -A -oX Results-Subnet1.xml 192.168.1.0/24

After generating the XML file, we use the db_import command to import
it into our database. We can then verify that the import worked by using
the hosts command, which lists the system entries that have been created, as
shown here:

msf > db_import Results-Subnet1.xml
msf > hosts -c address

Hosts
=====

address

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

22 Chapter 3

192.168.1.1
192.168.1.10
192.168.1.101
192.168.1.102
192.168.1.109
192.168.1.116
192.168.1.142
192.168.1.152
192.168.1.154
192.168.1.171
192.168.1.155
192.168.1.174
192.168.1.180
192.168.1.181
192.168.1.2
192.168.1.99

msf >

This tells us we’ve successfully imported the output of our Nmap scans
into Metasploit, as evidenced by the IP addresses populated when we run
the hosts commands.

Performing TCP Idle Scans

A more advanced Nmap scan method, the TCP idle scan, allows us to scan a
target stealthily by spoofing the IP address of another host on the network. For
this type of scan to work, we first need to locate an idle host on the network
that uses incremental IP IDs (which are used to track packet order). When an
idle system uses incremental IP IDs, these IDs become predictable, allowing
us to calculate the next one. Whenever a break in the predictability of the
IP ID sequence occurs, we know that we have discovered an open port. To
learn more about IP ID sequences and this module, visit https://nmap.org/book/
idlescan.html and https://www.metasploit.com/modules/auxiliary/scanner/ip/ipidseq.

However, many operating systems protect against this type of attack by
randomizing the IP IDs. Use the Framework’s scanner/ip/ipidseq module to
scan for a host that fits the TCP idle scan requirements:

msf > use auxiliary/scanner/ip/ipidseq
msf auxiliary(ipidseq) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 INTERFACE no The name of the interface
1 RHOSTS yes The target address range or CIDR...
 RPORT 80 yes The target port
 SNAPLEN 65535 yes The number of bytes to capture
2 THREADS 1 yes The number of concurrent threads
 TIMEOUT 500 yes The reply read timeout in milliseconds

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

Intelligence Gathering 23

This listing displays the required options for the ipidseq scan. One nota-
ble option, RHOSTS 1, can take IP ranges (such as 192.168.1.20 to 192.168.1.30);
Classless Inter-Domain Routing (CIDR) ranges (such as 192.168.1.0/24); mul-
tiple ranges separated by commas (such as 192.168.1.0/24, 192.168.3.0/24); or
a text file with one host per line (such as file:/tmp/hostlist.txt). All these options
give us flexibility in specifying our targets.

The THREADS value 2 sets the number of concurrent threads to use while
scanning. By default, all scanner modules have their THREADS value initially
set to 1. We can raise this value to speed up our scans or lower it to reduce
network traffic.

Let’s set our values and run the module. In this example, we’ll set the
value for RHOSTS to 192.168.1.0/24, set THREADS to 50, and then run the scan:

msf auxiliary(ipidseq) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(ipidseq) > set THREADS 50
THREADS => 50
msf auxiliary(ipidseq) > run

[*] 192.168.1.1's IPID sequence class: All zeros
[*] 192.168.1.10's IPID sequence class: Incremental!
[*] Scanned 030 of 256 hosts (011% complete)
[*] 192.168.1.116's IPID sequence class: All zeros
1 [*] 192.168.1.109's IPID sequence class: Incremental!
[*] Scanned 128 of 256 hosts (050% complete)
[*] 192.168.1.154's IPID sequence class: Incremental!
[*] 192.168.1.155's IPID sequence class: Incremental!
[*] Scanned 155 of 256 hosts (060% complete)
[*] 192.168.1.180's IPID sequence class: All zeros
[*] 192.168.1.181's IPID sequence class: Incremental!
[*] 192.168.1.185's IPID sequence class: All zeros
[*] 192.168.1.184's IPID sequence class: Randomized
[*] Scanned 232 of 256 hosts (090% complete)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ipidseq) >

Judging by the results of our scan, we see several potential idle hosts that
we can use to perform idle scanning. We’ll try scanning a host using the sys-
tem at 192.168.1.109 1 by using the -sI command line flag to specify it:

msf auxiliary(ipidseq) > nmap -PN -sI 192.168.1.109 192.168.1.155
[*] exec: nmap -PN -sI 192.168.1.109 192.168.1.155

Idle scan using zombie 192.168.1.109 (192.168.1.109:80); Class: Incremental
Interesting ports on 192.168.1.155:
Not shown: 996 closed|filtered ports
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
MAC Address: 00:0C:29:E4:59:7C (VMware)

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

24 Chapter 3

Nmap done: 1 IP address (1 host up) scanned in 7.12 seconds
msf auxiliary(ipidseq) >

By scanning the idle host, we were able to discover a few open ports
on our target system without sending a single packet to the system for our
IP address.

Running Nmap from MSFconsole

Now that we’ve performed advanced reconnaissance on our target, let’s
connect Nmap with Metasploit. To do this, we just make sure our database
is connected:

msf > db_status

We should be able to enter the db_nmap command from within MSFconsole
to run Nmap and have its results automatically stored in our new database:

msf > db_nmap -sS -A 10.10.11.129

[*] Nmap: Starting Nmap(https://nmap .org)
[*] Nmap: Nmap scan report for 10.10.11.129
[*] Nmap: Host is up (0.023s latency).
[*] Nmap: Not shown: 987 filtered tcp ports (no-response)
[*] Nmap: PORT STATE SERVICE VERSION
[*] Nmap: 53/tcp 1 open domain Simple DNS Plus
[*] Nmap: 80/tcp open http Microsoft IIS httpd 10.0 2
[*] Nmap: |_http-server-header: Microsoft-IIS/10.0
[*] Nmap: | http -methods:
[*] Nmap: |_ Potentially risky methods: TRACE
[*] Nmap: |_http-title: Search — Just Testing IIS
[*] Nmap: 88/tcp open kerberos-sec Microsoft Windows Kerberos
[*] Nmap: 135/tcp open msrpc Microsoft Windows RPC
[*] Nmap: 139/tcp open netbios-ssn Microsoft Windows netbios-ssn
[*] Nmap: 389/tcp open ldap Microsoft Windows Active Directory LDAP
[*] Nmap: | ssl-cert: Subject: commonName=research
[*] Nmap: 443/tcp open ssl/http Microsoft IIS httpd 10.0
[*] Nmap: | ssl-cert: Subject: commonName=research
[*] Nmap: |_http-server-header: Microsoft-IIS/10.0
[*] Nmap: | tls-alpn:
[*] Nmap: |_ http /1 .1
[*] Nmap: | http -methods:
[*] Nmap: |_ Potentially risky methods: TRACE
[*] Nmap: |_http-title: Search — Just Testing IIS
[*] Nmap: 445/tcp open microsoft-ds?
[*] Nmap: 464/tcp open kpasswd5?
[*] Nmap: 593/tcp open ncacn_http Microsoft Windows RPC over HTTP 1.0
[*] Nmap: 636/tcp open ssl/ldap Microsoft Windows Active Directory LDAP
[*] Nmap: No OS matches for host
[*] Nmap: Network Distance: 2 hops
[*] Nmap: Service Info: Host: RESEARCH; OS: Windows; CPE: cpe:/o:microsoft:windows
[*] Nmap: Host script results:
[*] Nmap: | smb2-security-mode:

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

Intelligence Gathering 25

[*] Nmap: | 3.1.1:
[*] Nmap: |_ Message signing enabled and required
[*] Nmap: TRACEROUTE (using port 135/tcp)
[*] Nmap: HOP RTT ADDRESS
[*] Nmap: 1 22.96 ms 10.10.14.1
[*] Nmap: 2 22.95 ms 10.10.11.129
[*] Nmap: OS and Service detection performed. Please report any incorrect results... 3
[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 108.13 seconds

We scanned only one system in this example, but you can specify mul-
tiple IPs using CIDR notation or ranges (for example, 192.168.1.1/24 or
192.168.1.1–254). If you would like to try this yourself, you can scan scanme
.nmap .org (45.33.32.156) or one of the machines you set up in Appendix A.

Notice a series of open ports 1, software versions 2, and even a predic-
tion about the target’s operating system. In this scan, Nmap was not able to
determine the operating system 3, but sometimes you’ll get lucky.

To check that the results from the scan are stored in the database, we
run the services command:

msf > services
Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
10.0.1.10 62078 tcp tcpwrapped open
10.10.11.129 53 tcp domain open Simple DNS Plus
10.10.11.129 80 tcp http open Microsoft IIS httpd 10.0
10.10.11.129 88 tcp kerberos-sec open Microsoft Windows Kerberos
10.10.11.129 135 tcp msrpc open Microsoft Windows RPC
10.10.11.129 139 tcp netbios-ssn open Microsoft Windows netbios...
10.10.11.129 389 tcp ldap open Microsoft Windows Active...
10.10.11.129 443 tcp ssl/http open Microsoft IIS httpd 10.0
10.10.11.129 445 tcp microsoft-ds open
10.10.11.129 464 tcp kpasswd5 open
10.10.11.129 593 tcp ncacn_http open Microsoft Windows RPC over HTTP 1.0
10.10.11.129 636 tcp ssl/ldap open Microsoft Windows Active...

We’re beginning to develop a picture of our target and exposed ports
for use as potential attack vectors.

Port Scanning with Metasploit
In addition to its ability to use third-party scanners, Metasploit has several
port scanners built into its auxiliary modules that directly integrate with
most aspects of the Framework. In later chapters, we’ll leverage compro-
mised systems to scan and attack other systems; this process, often called
pivoting, allows us to use internally connected systems to route traffic to a
network that would otherwise be inaccessible.

For example, suppose you compromise a system behind a firewall
that is using Network Address Translation (NAT). The system behind the

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

26 Chapter 3

NAT-based firewall uses private IP addresses, which you cannot contact
directly from the internet. If you use Metasploit to compromise a system
behind a NAT firewall, you might be able to use that compromised internal
system to pass traffic (or pivot) to internally hosted and private IP-based
systems and penetrate the network farther behind the firewall.

To see the list of port-scanning tools the Framework offers, enter the
following:

msf > search portscan

Let’s perform an example scan of a single host using Metasploit’s SYN
port scanner. In the following listing, we set RHOSTS to 192.168.1.155, set
THREADS to 50, and then run the scan:

msf > use auxiliary/scanner/portscan/syn
msf auxiliary(syn) > set RHOSTS 192.168.1.155
RHOSTS => 192.168.1.155
msf auxiliary(syn) > set THREADS 50
THREADS => 50
msf auxiliary(syn) > run
[*] TCP OPEN 192.168.1.155:135
[*] TCP OPEN 192.168.1.155:139
[*] TCP OPEN 192.168.1.155:445
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(syn) >

From the results, you can see that ports 135, 139, and 445 are open on
IP address 192.168.1.155.

Targeted Scanning
When you are conducting a penetration test, there is no shame in looking
for an easy win. A targeted scan looks for specific operating systems, ser-
vices, program versions, or configurations that are known to be exploitable
and that provide an easy door into a target network. Rapid7 maintains a
repository of verified scanner and exploit modules (https://www.rapid7.com/
db/?q=&type=metasploit). It’s a good idea to start with the newest scanners.

Scanning for Server Message Block
Metasploit can scour a network and attempt to identify versions of Microsoft
Windows using its smb_version module. This scanner relies on detecting
Server Message Block (SMB), a common file-sharing protocol.

N O T E If you’re not familiar with SMB, study up a bit before you continue. Here is a great
resource from the team at Microsoft on some of the fundamentals of SMB: https://
docs.microsoft.com/en-us/windows/win32/fileio/microsoft-smb-protocol
-and-cifs-protocol -overview.

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

Intelligence Gathering 27

We run the module, list our options, set RHOSTS, and begin scanning:

msf > use auxiliary/scanner/smb/smb_version
msf auxiliary(smb_version) > show options

Module options (auxiliary/scanner/smb/smb_version):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOSTS yes The target address range or CIDR...
 THREADS 1 yes The number of concurrent threads

msf auxiliary(smb_version) > set RHOSTS 10.10.11.129
RHOSTS => 10.10.11.129
msf auxiliary(smb_version) > run

[*] 10.10.11.129:445 - SMB Detected (compression capabilities:) (encryption capabilities:
AES-128-CCM) (signatures:optional) (guid:{e76d4bf1-3d3c-45e7-aec6-08f7be28070c})
(authentication domain:SEARCH)
[*] 10.10.11.129: - Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

The smb_version scanner has detected the preferred dialect, encryp-
tion capabilities, and other properties of the SMB service running on this
machine. Because we were scanning only one system, we left THREADS set to 1.
If we had been scanning several systems, such as a class C subnet range, we
might have considered upping THREADS using the set THREADS number option.

The results of this scan are stored in the Metasploit database for use at
a later time and can be accessed with the hosts command:

msf auxiliary(smb_version) > hosts -c address,os_flavor,vulns,svcs,workspace

Hosts
=====

address os_flavor vulns svcs workspace
------- --------- ----- ---- ---------
10.10.11.129 1 13 default
msf auxiliary(smb_version) >

This is a great way to quickly and quietly target hosts that are likely to
be more vulnerable when our goal is to avoid being noticed. We have dis-
covered the system has a vulnerability. We can use the vulns command to
find more information about that vulnerability:

msf auxiliary(scanner/smb/smb_version) > vulns

Vulnerabilities
===============

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

28 Chapter 3

Host Name References
---- ---- ----------
10.10.11.129 SMB Signing Is Not Required URL...

We’ll discuss exploiting such vulnerabilities in later chapters.

Hunting for Poorly Configured Microsoft SQL Servers
Poorly configured Microsoft SQL Server (MS SQL) installations may pro-
vide an initial way into a target network. In fact, some system administrators
don’t even realize that they have MS SQL servers installed on their work-
stations at all, because the service is installed as a prerequisite for some
common software, such as Microsoft Visual Studio. These installations may
be unused, unpatched, or never even configured.

When MS SQL is installed, it listens by default either on TCP port 1433
or on a random dynamic TCP port. If MS SQL is listening on a dynamic port,
simply query UDP port 1434 to discover which one. Of course, Metasploit has
a module that can make use of this feature: mssql_ping.

Because mssql_ping uses UDP, it can be quite slow to run across several
subnets due to timeouts. But on a local LAN, setting THREADS to 255 will
greatly speed up the scan. As Metasploit finds MS SQL servers, it should dis-
play all the details it can extract from them, including (and perhaps most
importantly) the TCP port on which the server is listening.

Here’s how you might run an mssql_ping scan, which includes starting
the scan, listing and setting options, and viewing the results:

msf > use auxiliary/scanner/mssql/mssql_ping
msf auxiliary(mssql_ping) > show options

Module options (auxiliary/scanner/mssql/mssql_ping):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 PASSWORD no The password for the specified username
 RHOSTS yes The target address range or CIDR identifier
 TDSENCRYPTION false yes Use TLS/SSL for TDS data "Force Encryption"
 THREADS 1 yes The number of concurrent threads
 USERNAME sa no The username to authenticate as
 USE_WINDOWS_AUTHENT false yes Use windows authentication

msf auxiliary(mssql_ping) > set RHOSTS 10.10.1.0/24
RHOSTS => 10.10.1.0/24
msf auxiliary(mssql_ping) > set THREADS 255
THREADS => 255
msf auxiliary(mssql_ping) > run
 [*] 128.143.124.123: - SQL Server information for 10.10.1.123:
 [+] 128.143.124.123: - ServerName = REALESTATEFILE
 [+] 128.143.124.123: - InstanceName = SQLEXPRESS
 [+] 128.143.124.123: - IsClustered = No
 [+] 128.143.124.123: - Version = 15.0.2000.5
 [+] 128.143.124.123: - tcp = 49741

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

Intelligence Gathering 29

Not only does the scanner locate an MS SQL server but it also identifies
the instance name, the SQL server version, and the TCP port number on
which it is listening. Just think of how much time this targeted scan for SQL
servers would save over running Nmap against all ports on all machines in a
target subnet in search of the elusive TCP port.

Scanning for S3 Buckets
If you are evaluating a cloud environment, you might also want to scan for
Amazon Simple Storage Service (S3) buckets, a form of cloud storage. If
an S3 bucket has been configured incorrectly, it might leak information to
an attacker. S3Scanner (https://github.com/sa7mon/S3Scanner) is a great tool
for scanning S3 buckets. You can install S3Scanner on your Kali machine
using pip3:

kali@kali:~$ sudo pip3 install s3scanner

We’ll scan the http://flaws.cloud site created by Scott Piper. This inten-
tionally vulnerable site and its sibling, http://flaws2.cloud, are great resources
for practicing your cloud pentesting skills. Once you’ve installed the scanner,
scan http://flaws2.cloud by running the following command:

kali@kali:~$ s3scanner scan --bucket flaws2.cloud
http.cloud | bucket_exists | AuthUsers: [], AllUsers: []

The scanner has discovered an S3 bucket that is readable by all users,
including the public.

Scanning for SSH Server Version
If, during your scanning, you encounter machines running Secure Shell
(SSH), you should determine which version is running on the target. SSH is
a secure protocol, but researchers have identified vulnerabilities in various
implementations of it. You never know when you might get lucky and come
across an old machine that hasn’t been updated.

You can use the Framework’s ssh_version module to determine the SSH
version running on the target server:

msf > use auxiliary/scanner/ssh/ssh_version
msf auxiliary(ssh_version) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(ssh_version) > set THREADS 50
THREADS => 50
msf auxiliary(ssh_version) > run

[*] 192.168.1.1:22, SSH server version: SSH-2.0-OpenSSH_7.4...
[*] Scanned 044 of 256 hosts (017% complete)
[*] 192.168.1.101:22, SSH server version: SSH-2.0-OpenSSH_5.1p1 Debian-3ubuntu1
[*] Scanned 100 of 256 hosts (039% complete)
[*] 192.168.1.153:22, SSH server version: SSH-2.0-OpenSSH_4.3p2 Debian-8ubuntu1
[*] 192.168.1.185:22, SSH server version: SSH-2.0-OpenSSH_4.3

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

30 Chapter 3

This output tells us that a few different servers are running with various
patch levels. This information could prove useful if, for example, we wanted
to attack a specific version of OpenSSH found with the ssh_version scan.

Scanning for FTP Servers
FTP is a complicated and insecure protocol. FTP servers are often the easi-
est way into a target network, and you should always scan for, identify, and
fingerprint any FTP servers running on your target.

Let’s look at an example scan for FTP services using the Framework’s
ftp_version module:

msf > use auxiliary/scanner/ftp/ftp_version
msf auxiliary(ftp_version) > show options

Module options (auxiliary/scanner/ftp/ftp_version):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 FTPPASS mozilla@example .com no The password for the specified username
 FTPUSER anonymous no The username to authenticate as
 RHOSTS yes The target address range or CIDR identifier
 RPORT 21 yes The target port
 THREADS 1 yes The number of concurrent threads

msf auxiliary(ftp_version) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(ftp_version) > set THREADS 255
THREADS => 255
msf auxiliary(ftp_version) > run

[*] 192.168.1.155:21 FTP Banner: Minftpd ready

The scanner successfully identified an FTP server. Now let’s see if this FTP
server allows anonymous logins using the Framework’s anonymous module:

msf > use auxiliary/scanner/ftp/anonymous
msf auxiliary(anonymous) > set RHOSTS 192.168.1.155
RHOSTS => 192.168.1.155
msf auxiliary(anonymous) > set THREADS 50
THREADS => 50
msf auxiliary(anonymous) > run

[*] Scanned 045 of 256 hosts (017% complete)
[*] 192.168.1.155:21 Anonymous READ/WRITE (220 Minftpd ready)

The scanner reports that anonymous access is allowed and that anony-
mous users have both read and write access to the server; in other words, we
have full access to the remote system and the ability to upload or download
any file that can be accessed by the FTP server software.

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

Intelligence Gathering 31

Sweeping for Simple Network Management Protocol
Simple Network Management Protocol (SNMP) is typically used in network
devices to report information such as bandwidth utilization and collision
rates. However, some operating systems also have SNMP servers that can
provide information such as CPU utilization, free memory, and other
system-specific details.

Convenience for the system administrator can be a gold mine for the
penetration tester, and accessible SNMP servers can offer considerable
information about a specific system or even make it possible to compromise
a remote device. If, for instance, you can get the read/write SNMP com-
munity string for a Cisco router, you can download the router’s entire con-
figuration, modify it, and upload it back to the router. (Community strings
are essentially passwords used to query a device for information or to write
configuration information to the device.)

The Metasploit Framework includes a built-in auxiliary module called
snmp_enum that is designed specifically for SNMP sweeps. Before you start
the scan, keep in mind that the read-only (RO) and read/write (RW) com-
munity strings will play an important role in the type of information you
will be able to extract from a given device. On Windows-based devices con-
figured with SNMP, you can often use the RO or RW community strings to
extract patch levels, running services, usernames, uptime, routes, and other
information that can make things much easier for you during a pentest.

To gain access to a switch, you’ll first need to attempt to find its com-
munity strings. After you guess the community strings, some versions of
SNMP will allow anything from excessive information disclosure to full sys-
tem compromise. SNMPv1 and v2 are inherently flawed protocols. SNMPv3,
which incorporates encryption and better check mechanisms, is signifi-
cantly more secure.

The Framework’s snmp_login module will attempt to guess community
strings by sending entries in a wordlist to one IP address or a range of
IP addresses:

msf > use auxiliary/scanner/snmp/snmp_login
msf auxiliary(snmp_login) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(snmp_login) > set THREADS 50
THREADS => 50
msf auxiliary(snmp_login) > run

[*] >> progress (192.168.1.0-192.168.1.255) 0/30208...
[*] 192.168.1.2 'public' 'GSM7224 L2 Managed Gigabit Switch'
[*] 192.168.1.2 'private' 'GSM7224 L2 Managed Gigabit Switch'
[*] Auxiliary module execution completed
msf auxiliary(snmp_login) >

A quick Google search for GSM7224, listed in the output, tells us that
the scanner has found both the public and private community strings for a
NETGEAR switch. This result, believe it or not, has not been staged for this
book. These are the default factory settings for this switch.

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

32 Chapter 3

You will encounter many jaw-dropping situations like these throughout
your pentesting career because many administrators simply attach devices
to a network with all their defaults still in place. The situation is even
scarier when you find these devices accessible from the internet within a
large corporation.

Writing a Custom Scanner
It can be useful to write your own scanner during security assessments
because many applications and services lack scanner modules in Metasploit.
Thankfully, the Framework has many features to help you build a custom
scanner, including support for proxies, the Secure Sockets Layer (SSL) pro-
tocol, and threading.

Metasploit Framework scanner modules often include features using
various mixins, which are portions of code with predefined functions. The
Auxiliary::Scanner mixin overloads the auxiliary run method; calls the run
_host(ip), run_range(range), or run_batch(batch) methods; and then processes
the IP addresses you specified for scanning. While we’ll cover auxiliary
modules in more detail in Chapter 11, we’ll demonstrate here how to lever-
age Auxiliary::Scanner to call additional built-in Metasploit functionality.
Let’s write some code.

The following is a Ruby script for a simple TCP scanner that connects
to a remote host on a default port of 12345 and, upon connecting, sends
the message “HELLO SERVER,” receives the server response, and prints it
out along with the server’s IP address:

#Metasploit
require 'msf/core'
class Metasploit3 < Msf::Auxiliary
 1 include Msf::Exploit::Remote::Tcp
 2 include Msf::Auxiliary::Scanner
 def initialize
 super(
 'Name' => 'My custom TCP scan',
 'Version' => '$Revision: 1 $',
 'Description' => 'My quick scanner',
 'Author' => 'Your name here',
 'License' => MSF_LICENSE
)
 register_options(
 [
 3 Opt::RPORT(12345)
], self.class)
 end

 def run_host(ip)
 connect()
 4 sock.puts('HELLO SERVER')
 data = sock.recv(1024)
 5 print_status("Received: #{data} from #{ip}")

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

Intelligence Gathering 33

 disconnect()
 end
end

If you aren’t familiar with Ruby, you may want to take some time to
familiarize yourself with the language and revisit this section later.

This simple scanner uses the Msf::Exploit::Remote::Tcp mixin 1 to han-
dle the TCP networking. The Msf::Auxiliary::Scanner mixin exposes the vari-
ous settings that are required for scanners within the Framework 2. This
scanner is configured to use the default port of 12345 3, and upon connect-
ing to the server, it sends a message 4, receives the reply from the server,
and then prints it out to the screen along with the server IP address 5.

We have saved this custom script under modules/auxiliary/scanner/ as
simple_tcp.rb. The saved location is important in Metasploit. For example, if
the module were saved under modules/auxiliary/scanner/http/, it would show
up in the modules list as scanner/http/simple_tcp.

To test this rudimentary scanner, we set up a Netcat listener on port
12345 and pipe in a text file to act as the server response:

kali@kali:/$ echo "Hello Metasploit" > banner.txt
kali@kali:/$ nc -lvnp 12345 < banner.txt
listening on [any] 12345...

Next, we load MSFconsole, select our scanner module, set its param-
eters, and run it to see if it works:

msf > use auxiliary/scanner/simple_tcp
msf auxiliary(simple_tcp) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOSTS yes The target address range or CIDR identifier
 RPORT 12345 yes The target port
 THREADS 1 yes The number of concurrent threads

msf auxiliary(simple_tcp) > set RHOSTS 192.168.1.101
RHOSTS => 192.168.1.101
msf auxiliary(simple_tcp) > run

[*] Received: Hello Metasploit from 192.168.1.101
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(simple_tcp) >

Although this is only a simple example, the level of versatility afforded
by the Metasploit Framework can be of great assistance when you need to
get some custom code up and running quickly in the middle of a pentest.
Hopefully, this example demonstrates the power of the Framework and
modular code.

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

34 Chapter 3

Wrapping Up
In this chapter, you learned how to leverage the Metasploit Framework for
intelligence gathering, as outlined in the PTES. Intelligence gathering
takes practice and requires a deep understanding of how an organization
operates and how to identify the best potential attack vectors. As with any-
thing, you should adapt and improve your own methodologies throughout
your penetration-testing career. Just remember that your main focus for
this phase is to learn about the organization you’re attacking and its overall
footprint. Regardless of whether your work occurs over the internet, on an
internal network, wirelessly, or via social engineering, the goals of intelli-
gence gathering will always be the same.

In the next chapter, we’ll move on to an important step of the vulnera-
bility analysis phase: automated vulnerability scanning. In later chapters, we
will explore more in-depth examples of how to create your own modules,
exploits, and scripts.

Metasploit (Sample Chapter) © 10/29/24 by David Kennedy, Mati Aharoni, Devon Kearns, Jim O’Gorman, and Daniel Graham

